Du 29/09 au 03/10 Programme de colle N° 2 CPES

Questions de cours

Séries générales

Vous devez connaître l'énoncé et la démonstration des propriétés suivantes :

• Si r et s sont les racines d'un polynôme du second degré de la forme $P(x) = ax^2 + bx + c$, alors

$$\begin{cases} r+s = -\frac{b}{a} \\ rs = -\frac{c}{a} \end{cases}$$

• Si
$$n \in \mathbb{N}$$
, $\sum_{i=0}^{n} k = \frac{n(n+1)}{2}$

• Si
$$n \in \mathbb{N}$$
,
$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$$

Séries techno/pro

Vous devez savoir:

- 1. Résoudre une équation et une inéquation du second degré en exploitant une racine évidente ou bien en utilisant les formules (discriminant + racines en fonction de Δ).
- 2. **Exercice 5 du cours** La suite (u_n) est définie par $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = 0$, $6u_n + 2$
 - (a) On pose, pour tout entier naturel n, $v_n = u_n 5$ Démontrer que la suite (v_n) est géométrique. Donner son premier terme et sa raison.
 - (b) En déduire une expression de v_n en fonction de n, puis une expression de u_n en fonction de n.

3. Si
$$n \in \mathbb{N}$$
, $\sum_{i=0}^{n} k = \frac{n(n+1)}{2}$.

Exercices

Calcul Développement

Développements, utilisation des identités remarquables du secondaire.

Fractions

Opérations sur les fractions.

Tout le chapitre 1 : second degré

Mise sous forme canonique, interprétation graphique des constantes α et β

Résolutions d'équations du second degré ou de degré supérieur en utilisant des racines « évidentes » ou suggérées après factorisation du polynôme — Équations à paramètre

Somme et produit des racines, factorisation des polynômes de degré 2

Problèmes de signes - Inéquations du second degré ou se ramenant au second degré.

Série générale seulement : factorisation de polynômes de degrés supérieurs par x-a (division euclidienne, méthode de Hörner).

Chapitre 2 : Suites numériques (I)

Utiliser une suite auxiliaire arithmétique ou géométrique pour obtenir une forme explicite d'une suite récurrente. Pas de calculs de sommes.

Programme prévisionnel

Généralités sur les suites. Calculs de sommes.

Chapitre 1 Second degré

1 Étude des fonctions polynômes du second degré

Forme canonique - Variations - Courbe représentative

2 Équations du second degré

Racines d'un trinôme - racines évidentes - forme factorisée - Discriminant - Formules de résolution par radicaux

3 Signe du trinôme

Signe d'un trinôme - Inéquations

— Série générale uniquement —

Chapitre 1 - Complément Division des polynômes

Méthodes de division des polynômes - div euclidienne - tableau de Hörner.

Chapitre 2 Suites numériques

1 Définition des suites numériques

Définition explicite, récurrente. représentation graphique dans chaque cas.

2 Suites arithmétiques

Définition, expression du terme général en fonction de n. Somme des premiers entiers.

3 Suites géométriques

Définition, expression du terme général en fonction de n. Somme des puissances d'un nombre. Utilisation de suites auxiliaires pour déterminer l'expression en fonction de n du terme général d'une suite.