Lycée Bellevue PC* 2022-2023

test-contrôle de connaissances -26 Septembre

Nom:	

1	Expression de la densité de probabilité de présence associée à une orbitale atomique $\phi: \phi ^2$ Expression de la densité de charge dans une région : - e * P avec P = probabilité de présence d e l'électron dans la région		
2	Notation, nom et valeurs possibles pour les nombres quantiques associés à une OA	nombre quantique principal , n , entier naturel non nul nombre quantique secondaire , l , entier tel que $0 \le l < n$ nombre quantique magnétique , m , entier tel que $-l \le m \le l$	
3	Expression de l'énergie d'une OA a) Pour l'atome d'hydrogène b)Pour une espèce hydrogénoïde c) Pour un atome polyélectronique	que $-1 \le m \le 1$ a) $-\frac{13,6}{n^2} eV$ b $-\frac{13,6Z^2}{n^2} eV$ c) $-\frac{13,6Z^2}{n^2} eV$	
4	Indiquer de quel nombre quantique dépend principalement le rayon d'une OA.	n	
5	Indiquer le nombre d'OA constituant les sous couches 5s, 3d,3p	5s: 1 3p: 3 3d: 5	
6	Représentation conventionnelle des orbitales 2p	2pz 2py 2px	
7	Enoncé de la règle de Klechkowski : La configuration les <u>sous couches</u> selon les valeurs de (n+l) croissante même valeur de (n+l) on les remplit selon les valeurs	s. Si des sous couches sont caractérisées par la	
8	Ecrire la CEF du platine $Z = 78$ utiliser l'écriture simplifiée utilisant les gaz nobles	[54Xe] 6s ² 4f ¹⁴ 5 d ⁸	
9	Indiquer la position du platine dans la classification périodique	6ème période et 8ème colonne du bloc d cad 10ème colonne	
10	Nombre de colonnes de la classification périodique	18	
11	Indiquer le numéro atomique des éléments alcalino- terreux situés sur les 6 premières périodes	Eléments de la deuxième colonne. Le premier se situe sur la deuxième période $Z = 4$ d'où $Z = 4$ (Be) , $4+8 = 12$ (Mg) , $12+8 = 20$ (Ca) , $20+18 = 38$ (Sr) , $38+18 = 56$ (Ba)	
12	Indiquer si le platine est un élément de transition ; justifier.	Sous couche d incomplète ⇒élément de transition	
13	Indiquer la structure de la couche de valence des halogènes et préciser leur nom et symbole.	ns ² np ⁵ Fluor: F Chlore: Cl Brome: Br Iode: I	
14	Indiquer comment varie la charge effective des électrons de valence sur une période	Elle augmente de gauche à droite	
15	Indiquer comment évolue l'énergie des orbitales de valence le long de la classification .	Sur une période , elle diminue de gauche à droite Sur une colonne elle augmente de haut en bas	

16	Relier l'évolution de l'énergie des OA à l'évolution	L'énergie est d'autant plus faible que
	de l'électronégativité.	l'électronégativité est grande
17	Relier qualitativement le rayon associé à une orbitale	Le rayon est d'autant plus petit que Z*
	atomique à la charge effective.	augmente
18	Le chrome(Cr) est un élément de la première série	Première série de transition ⇒bloc d de la
	de transition ayant un degré d'oxydation maximal égal à VI . Déterminer son numéro atomique.	quatrième période $$, électrons de valence $4s^2$ $3d^x$
		Degré maximal = $+$ VI \Rightarrow x = 4
		Alors CEF (d'apres Klechkowski): [18Ar] $4s^2 3d^4 : Z = 24$
19	CEF de l'ion Cr ³⁺	[18Ar] 3d ³
20	Relier qualitativement le rayon associé aux orbitales de valence d'un atome à sa polarisabilité	La polarisabilité augmente avec le rayon des orbitales de valence.

Rappels du programme

Notions et continus	Capacités exigibles
Fonctions d'onde électroniques ψ de l'atome	Interpréter ψ ² comme la densité de probabilité de
d'hydrogène.	présence d'un électron en un point et la relier à la
	densité de charge.
Nombres quantiques n, l, ml, ms.	Prévoir qualitativement, pour l'atome d'hydrogène
	et les ions hydrogénoïdes, l'évolution du rayon et
Énergie et rayon associés à une fonction d'onde.	de l'énergie associés à une fonction d'onde en
	fonction du nombre quantique principal.
Orbitales des atomes polyélectroniques,	Dessiner l'allure des orbitales atomiques s et p.
représentation schématique.	4
Configuration électronique d'un atome et d'un ion	Établir la configuration électronique d'un atome
monoatomique.	ou d'un ion à l'état fondamental.
Électrons de coeur et de valence.	
	Déterminer le nombre d'électrons non appariés
Notion qualitative de charge effective.	d'un atome dans son état fondamental
Notion quantative de charge effective.	Relier qualitativement le rayon associé à une orbitale atomique à la charge effective.
Électronégativité.	atomique à la charge effective.
Licenonegativite.	Relier qualitativement l'énergie associée à une
Rayon d'une orbitale atomique, polarisabilité	orbitale atomique à l'électronégativité de l'atome.
rayon a une oronaic acomique, potarisacime	oronare atomique a referencieganivité de ratome.
	Relier qualitativement le rayon associé aux orbitales
	de valence d'un atome à sa polarisabilité.
Architecture du tableau périodique des éléments.	Relier la position d'un élément dans le tableau
Organisation par blocs.	périodique à la configuration électronique de
	l'atome associé dans son état fondamental
	Situer dans le tableau les familles suivantes :
	métaux alcalins et alcalino-terreux, halogènes et
	gaz nobles