Introduction – Système chimique / correction des exercices

Exercice 1.

Il suffit de revenir aux notions de base : $C = \frac{n_{HCl}}{V} = \frac{m_{HCl}}{M_{HCl} V}$

Et par ailleurs si m désigne la masse d'un volume V de la solution commerciale

$$m_{HCl} = 0.37 \text{ m}$$
 et $m = \mu \text{ V}$

Soit
$$C = \frac{0.37\mu}{M_{HCl}}$$

$$C = 12,2 \text{ mol}L^{-1}$$

Exercice 2:

1) Equation - bilan : A partir des réactifs et des produits indiqués :

Pour la monométhylhydrazine a $CH_6 N_2 + b N_2 O_4 \rightarrow cN_{2(g)} + d CO_{2(g)} + e H_2 O_{(g)}$

Pour la diméthylhydrazine a' C_2H_8 $N_2 + b'$ $N_2O_4 \rightarrow c'N_{2(g)} + d'$ $CO_{2(g)} + e'$ $H_2O_{(g)}$

<u>La conservation de tous les éléments doit être respectée</u>, d'où les relations entre coefficients stoechiométriques :

	monométhylhydrazine	diméthylhydrazine
Conservation de C	a = d	2a' = d
Conservation de N	2a + 2b = 2c	2 a' + 2b' = 2c'
Conservation de O	4b = 2d + e	4b' = 2d' + e'
Conservation de H	6a = 2 e	8 a' = 2 e'

a et a' état imposés par l'énoncé, on exprime tous les autres coefficients en fonction de ces deux.

$$d=a$$
, $e = 3a$, $b = 5a/4$

$$c = 9a/4$$

$$d'= 2a', e' = 4a', b'= 2a'$$

$$c = 3a$$

$$CH_6N_2 + \frac{5}{4}N_2O_4 \rightarrow \frac{9}{4}N_2 + CO_2 + 3H_2O$$

$$C_2H_8N_2 + 2N_2O_4 \rightarrow 3N_2 + 2CO_2 + 4H_2O$$

2) La masse est une grandeur extensive, additive:

Pour le mélange initial : m_0 (mélange) = m (hydrazine) + m (N_2O_4)

Et une réaction de combustion est totale

► Mélange à base de monométhylhydrazine :

► Mélange à base de diméthylhydrazine :

$$m_0 = = n_2 M_2 + n_2$$
' M' et n_2 ' = 2 n_2 soit $m_0 = 244 n_2$ $n_{2gaz} = (3+2+4)n_2$ $n_{2gaz} = 9n_2$

A.N.
$$\mathbf{n}_1 = \mathbf{6,21.10^{-3}} \text{ mol}$$
 $n_{1gaz} = 0,039$ $\mathbf{n}_2 = \mathbf{4,10.10^{-3}} \text{ mol}$ et $n_{2gaz} = \mathbf{0,037}$
On en déduit : $\frac{n_{1gaz}}{n_{2gaz}} = \frac{\frac{25}{4}n_1}{9n_2} = \frac{\frac{25}{4}\frac{n_0}{161}}{\frac{9m_0}{244}} = \frac{\frac{25}{4}\frac{244}{161}}{\frac{9m_0}{244}} = \frac{1000}{161}$ $\frac{n_{1gaz}}{n_{2gaz}} = \mathbf{1,05}$

 $\left| rac{n_{1gaz}}{n_{2gaz}} > 1
ight| : \ \ le \ meilleur \ propergol \ est \ celui \ à \ base \ de \ momométhéthylhydrazine$

Exercice 3

On note n_0 la quantité de matière initiale de O_2 : $n(O_2) = n_0$ et aussi n (HCl)= n_0 Par définition, le rendement en Cl₂ s'exprime selon

$$r = \frac{n(Cl_2 form\acute{e})}{n(Cl_2 form\acute{e} si r\'{e}action totale)}$$

On introduit l'avancement de réaction ξ dans l'état final , on peut alors dresser le bilan de matière

Dans les conditions retenues , le réactif limitant est HCl : $\xi_{max} = n_{ini}$ (HCl) / 4 et n (Cl₂ formé si réaction totale) = $2 \xi_{max} = n_0 / 2$

$$r = \frac{2 n(C l_2 form\acute{e})}{n_0} = \frac{4\xi}{n_0}$$
 soit $\xi = n_0 \frac{r}{4}$; A.N. $\xi = 0.2375 n_0$

 $r = \frac{2 n (C l_2 form \acute{e})}{n_0} = \frac{4 \xi}{n_0} \quad \text{soit} \qquad \boxed{\xi = n_0 \frac{r}{4}} \quad ; \text{A.N.} \quad \xi = 0,2375 n_0$ Enfin, la pression partielle d'un constituant gazeux i s'exprime selon : $P_i = x_i P_{tot} = \frac{n_i}{n_{tot gaz}}$

Ainsi, les pressions partielles peuvent s'exprimer en fonction de ξ puis du rendement :

final
$$P_{tot} = 1 \text{ bar}$$

$$4 \text{ HCl} + Q_2 \rightarrow 2 \text{ H}_2\text{O} + 2 \text{ Cl}_2 \qquad n_{tot \, gaz}$$

$$1 \text{ final} \qquad 10^{-4} \xi \qquad 10^{-5} \xi \qquad 2 \xi \qquad 2 \xi \qquad 2 \eta_0 - \xi$$

$$1 \text{ pressions partielles} \qquad \frac{n_0 - 4\xi}{2n_0 - \xi} P_{tot} \qquad \frac{n_0 - \xi}{2n_0 - \xi} P_{tot} \qquad \frac{2\xi}{2n_0 - \xi} P_{tot} \qquad \frac{2\xi}{2n_0 - \xi} P_{tot}$$

$$1 \text{ final} \qquad 1 \text{ final}$$

A.N. $P_{tot} = 1$ bar

0,028 bar	0,43 bar	0,27 bar	0,27 bar
-----------	----------	----------	----------

Exercice 4:

Soit n₀ la quantité de matière initiale de pentachlorure de phosphore et ξ l'avancement de la réaction dans l'état final (celui caractérisé par d = 3,90).

Hypothèse : réaction non totale , le mélange gazeux final est constitué des 3 espèces PCl₅ , PCl₃ et Cl₂.

Le bilan de matière dans l'état final s'écrit :

	PCl_5	$PCl_3 +$	Cl_2	n_{tot}
Initial	n_0			n_0
Final	$n_0 - \xi \\$	ξ	ξ	$n_0 + \xi$

La densité d'un gaz s'exprime par ailleurs selon : $d = \frac{M}{29}$ avec M : masse molaire exprimée en gmol⁻¹. Pour un mélange de plusieurs gaz, la masse molaire (masse d'une mole de mélange) peut par ailleurs s'exprimer selon $M = \sum x_i M_i$ avec x_i : fraction molaire du gaz i et M_i sa masse molaire.

Ainsi
$$d = \frac{1}{29}(x_{PCl5}M_{PCl5} + x_{PCl3}M_{PCl3} + x_{Cl2}M_{Cl2})$$

$$d = \frac{1}{29} \left(\frac{n_0 - \xi}{n_0 + \xi} M_{PCl5} + \frac{\xi}{n_0 + \xi} M_{PCl3} + \frac{\xi}{n_0 + \xi} M_{Cl2} \right) = \frac{1}{29} \left(\frac{n_0}{n_0 + \xi} M_{PCl5} + \frac{\xi}{n_0 + \xi} (M_{PCl3} + M_{Cl2} - M_{PCl5}) \right)$$

$$d = \frac{1}{29} \frac{n_0}{n_0 + \xi} M_{PCl5}$$

D'autre part , la fraction molaire en dichlore vérifie : $y = \frac{\xi}{n_0 + \xi}$ d'où $\xi = n_0 \frac{y}{1 - y}$ En conclusion $d = \frac{M_{PCl5}}{29} (1 - y)$ ou $y = 1 - \frac{29d}{M_{PCl5}}$

En conclusion
$$d = \frac{M_{PCl5}}{29} (1-y)$$
 ou $y = 1 - \frac{29d}{M_{PCl5}}$

A.N.
$$d = 3.90$$
 $M = 208.5$ gmol⁻¹ $y = 0.46$