
Lycée Bellevue – Toulouse Année 2025-2026
MPSI – Informatique

Corrigé partiel du T. D. B7
Polynômes

1 Calculer la division euclidienne de A par B dans les cas suivants :

a. A = X3 + 3X2 + X − 3 B = X + 5
b. A = 2X4 + 4X3 − 5X + 1 B = 2X2 + 1
c. A = 3X2 + 6X + 5 B = iX + 1 + i

a. On obtient : Q = X2 − 2X + 11 R = −58
b. On obtient : Q = X2 + 2X − 1

2 R = −7X + 3
2

c. On obtient : Q = −3iX + (3 − 3i) R = −1

2 Soit P = X7(X − 3)3.
Calculer P (9) en utilisant la formule de Leibniz.

On obtient P (9) = 10!X − 9 × 9!, ce qui se vérifie directement.

3 Appliquer la formule de Taylor pour

a. P = 2X2 + 7X + 7 en a = −2
b. Q = X3 − 9X2 + 26X − 24 en a = 3

Résoudre l’équation : Q(X) = 0

a. P = 1 − (X + 2) + 2(X + 2)2

b. P = (X + 3)3 − (X + 3)
On calcule P = (X + 2)(X + 3)(X + 4), donc les racines sont 2, 3 et 4.

4 Résoudre l’équation :
x5 − x4 − 6x3 + 14x2 − 12x = 0

P = X(X − 2)(X3 + X2 − 4X + 6) = X(X − 2)(X + 3)(X2 − 2X + 2)
Les racines sont 0, 2, −3, 1 + i et −i.
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5 Factoriser :
P = 2X6 + 7X5 + X4 − 14X3 − 8X2 + 7X + 5

Pour ceci, trouver deux racines évidentes et déterminer leurs ordres de multiplicité.

On obtient P = (X − 1)2(X + 1)3(2X + 5).

6 Résoudre le système : ß
xy = 24

x2 + y2 = 73

Le système implique (x + y)2 = 73 + 2 × 24 = 12, donc x + y = ±11.
Ainsi x et y sont les racines des polynômes X2 ± 11X + 24
Solutions : {3, 8} et {−3, −8}

7 En considérant le polynôme unitaire dont x, y, z sont les racines, résoudre le
système :  x + y + z = 1

xy + xz + yz = −16
xyz = 20

x, y, z sont les racines de P = X3 + X2 + 6X − 20 = (X + 2)(X2 − 3X − 10).
Les solutions sont {x, y, z} = {−2, −2, 5}.

8 Factoriser le polynôme :
P = X3 − (1 + 6i)X − (6 − 2i)

On obtient P = (X − i)(X2 + iX − (2 + 6i)) = (X − i)(X − 2 − i)(X + 2 + 2i).

9 Calculer le PGCD de A et B dans les cas suivants :

a. A = X + 2 B = 6X + 11
b. A = 4X2 − 1 B = 2X2 + 5X − 3
c. A = 2X3 − X2 − X − 3 B = 4X2 + 4X − 15
d. A = Xn − αn B = (X − α)n

avec (α, n) ∈ K∗ ×N∗

a. 1 b. X − 1
2 c. X − 3

2 d. X − α
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10 Déterminer des coefficients de Bézout pour :
A = (X − 4)(X − 1) et B = (X − 2).

U = −1
2 et V = 1

2(X − 3) conviennent.

11 Soit A, B, C trois polynômes non-nuls avec C unitaire.
Démontrer que (AC) ∨ (BC) = (A ∨ B)C.

On utilise (A ∨ B)K[X] = AK[X] ∩ BK[X].
Il faut justifier que si PK[X] = QK[X] alors P et Q sont associés.
On obtient que (AC) ∨ (BC) et (A ∨ B)C sont associés. Comme ils sont unitaires alors
ils sont égaux.

1 Donner la forme développée du polynôme P puis la forme factorisée du polynôme
Q avec :

P = (X3 + X2 + X + 1)
2n∑

k=0
(−1)kXk et Q =

n∑
k=0

(
n
k

)Ä 1
k+1 + n+2

k+2 X
ä
Xk

On obtient P = 1 + X2 + X2n+1 + X2n+3 et Q = (X + 1)n+1.

2 Calculer le quotient et le reste de la division euclidienne de A par B dans les cas
suivants :
a. A = X6 + 1 B = X3 + X2 + X + 1
b. A = 2X4 − 11X3 + 7X2 + 6X − 2

B = 2X2 − 5X + 2
c. A = X20 − 2X15 + 3X10 − 4X5 + 5

B = X7 + X2

d. A = X5 + iX4 B = X2 + 1

a. Q = X3 − X2 R = X2 + 1
b. Q = X2 − 3X − 5 R = −13X + 8
c. Q = X13 − 3X8 + 6X3 R = −10X5 + 5
d. Q = X3 + iX2 − X − i R = X + i
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3 Soit n un entier naturel, θ, a, b trois scalaires avec a ̸= b.
Déterminer le reste de la division euclidienne de :
a. Xn par (X − a), puis par (X − a)(X − b), puis par (X − a)2

b. ((sin θ)X + cos θ)n par X2 + 1
c. X2n + Xn + 1 par X2 + X + 1

a. Les restes sont respectivement :
• Rn = an (spécialiser en a)
• Rn = 1

a−b
[(an − bn)X − (ban − abn)] = 1

a−b
[an(X − b) − bn(X − a)]

(Spécialiser en a et en b)
• Rn = an−1[nX + (1 − n)a] = nan−1(X − a) + an

(Spécialiser en a, dériver, spécialiser en a. Ou utiliser la formule de Taylor).
b. Rn = (sin(nθ)X + cos(nθ)) (spécialiser en ±i).
c. Rn = 3 si n est multiple de 3, 0 sinon (spécialiser en j et j2).

4 On définit la fonction f sur R par :

f(x) = 2x3 + 7x2 − 2x + 5
x2 + 6x + 13

Grâce à une division euclidienne :
a. Démontrer que f possède une asymptote en ±∞ et en donner une équation.
b. Calculer une primitive de f .

a. La division euclidienne du numérateur par le dénominateur donne :

f(x) = 2x − 5 + 2x + 70
x2 + 6x + 13

La droite d’équation y = 2x − 5 est donc asymptote à la courbe.
b. On obtient : F (x) = x2 − 5x + ln (x2 + 6x + 13) + 32 arctan x+3

2

5 Soit a, b deux réels et n un entier naturel. Soit R = PQ avec :
P = (X − a)n et Q = (X − b)n

a. Donner P (k) pour tout k ∈ N.
b. Calculer R(n). Simplifier son expression dans le cas où a = b.

c. En déduire la valeur de :
n∑

k=0

(
n
k

)2

Obtient :
n∑

k=0

((
n
k

))2 =
(2n

n

)
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6 On considère les polynômes :
A = X9 − X8 − 4X7 + 7X6 + X5 − 10X4 + 6X3 + 3X2 − 4X + 1
B = X5 − X4 − 2X3 + 2X2 + X − 1

Factoriser B et démontrer qu’il divise A.

B = (X − 1)3(X + 1)2, 1 est bien racine triple de A et −1 est bien racine double de A.

7 Déterminer un polynôme P de degré minimal tel que P + 10 soit divisible par
(X − 2)2 et P − 12 soit divisible par (X + 2)2.

On obtient P = 11
16X3 − 33

4 X + 1.

8 À quelle condition nécessaire et suffisante sur (λ,µ) le polynôme X4 + X3 + λX2 +
µX + 2 est-il divisible par (X + 2)2 ?

On obtient λ = −15
2 µ = −10

Le quotient est alors Q = X2 − 3X + (λ + 8).
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9 Factoriser dans C[X] et dans R[X] les polynômes suivants.

P1 = (X2 − X + 1)2 + 1
P2 = X4 + X2 − 6
P3 = X7 − 125X4 − 16X3 + 2000
P4 = 2X3 − 2X2 − 9X − 9
P5 = (X2 + X − 4)2 + (X − 7)2

P6 = X5 − 4X3 + 10X2 − 13X + 6

P1 = (X + i)(X − 1 − i)(X − i)(X − 1 + i)

= (X2 + 1)(X2 − 2X + 2)

P2 = (X −
√

2)(X +
√

2)(X − i
√

3)(X + i
√

3)

= (X −
√

2)(X +
√

2)(X2 + 3)

P3 = (X − 2)(X + 2)(X − 2i)(X + 2i)(X − 5)(X − 5j)(X − 5j2)

= (X − 2)(X + 2)(X2 + 4)(X − 5)(X2 + 5X + 25)

P4 = 2(X − 3)(X + 1 − i√
2)(X + 1 + i√

2)

= 2(X − 3)(X2 + 2X + 3
2)

P5 = (X − 2 + i)(X − 2 − i)(X + 3 + 2i)(X + 3 − 2i)

= (X2 − 4X + 5)(X2 + 6X + 13)

P6 = (X − 1)2(X + 3)(X − 1+i
√

7
2 )(X − 1−i

√
7

2 )

= (X − 1)2(X + 3)(X2 − X + 2)
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10 Factoriser dans C[X] et dans R[X] les polynômes suivants.

P1 = X6 − 1
P2 = X3 + 1
P3 = X5 + X4 + X3 + X2 + X + 1
P4 = X4 + X2 + 1
P5 = X8 − 1

P1 = ∏
k (X − eik π

3 ) k = 0, . . . , 5
= (X − 1)(X + 1)(X2 + X + 1)(X2 − X + 1)

P2 = (X + 1)(X + j)(X + j2)
= (X + 1)(X2 − X + 1)

P3 = (X + 1)(X − j)(X + j)(X − j2)(X + j2)
= (X + 1)(X2 + X + 1)(X2 − X + 1)

P4 = (X − ζ)(X − ζ2)(X − ζ4)(X − ζ5) ζ = ei π
3

= (X2 + X + 1)(X2 − X + 1)
P5 = ∏

k (X − eik π
4 ) k = 0, . . . , 7

= (X − 1)(X + 1)(X2 + 1)(X2 −
√

2X + 1)(X2 +
√

2X + 1)

11 Soit n un entier strictement supérieur à 2 et :
Pn = Xn − nX + 1

a. Démontrer que Pn n’a que des racines simples.
b. Déterminer le nombre de ses racines réelles en fonction de n.

a. P ′
n = nXn−1 − n, ses racines sont les ζ ∈ Un−1.

Pn(ζ) = (1 − n)ζ + 1 ̸= 0
b. Si n est pair, Pn a deux racines, si n est impair Pn a trois racines.

12 Soit n ∈ N. Démontrer que 1 + X + Xn n’a que des racines simples.

Les racines ζ de P ′ vérifient ζn−1 = 1
n
, elles ne peuvent être racines de P .

page 7/12



MPSI – Informatique Corrigé partiel du TD B7 : Polynômes

13 Déterminer tous les polynômes vérifiant :

a. P ◦ P = P

b. P (X2) = (X2 + 1)P (X)
c. P (X + 1) = P (X)
d. (X + 3)P (X) = XP (X + 1)
e. P ′2 = 4P

f. (X2 + 1)P ′′ − 6P = 0

a. X et a0 ∈ K
b. P = λ(X2 − 1) avec λ ∈ K.
c. P = a0 ∈ K
d. On démontre que P = X(X + 1)(X + 2)Q puis avec la question précédente :

P = λX(X + 1)(X + 2) où λ ∈ K.
e. P = 0 ou P = (X + α)2 avec α ∈ K
f. Chercher le coefficient dominant. On obtient P = λ(X3 + X) avec λ ∈ K.

14 Soit P un polynôme non-nul vérifiant l’égalité :
(E) : P (X2) = P (X + 1)P (X).

a. Démontrer que si α est une racine de P alors α2n est racine de P pour tout n ∈ N.
b. Démontrer que toute racine non-nulle de P est de module 1.
c. Démontrer que toute racine de P différente de 1 est élément de 1 +U.
d. En déduire que seuls 0 et 1 peuvent être racines de P .
e. En déduire l’ensemble des polynômes vérifiant l’égalité (E).

a. Si α est racine alors α2 est racine, puis α2n pour tout n ∈ N. par récurrence.
b. Comme le nombre de racines est fini, alors il existe m et n distincts tels que α2n = α2m ,

donc |α| = 1.
c. Si α est racine, alors (α − 1)2 est racine, donc nul ou élément de U. Donc α − 1 est

élément de U.
d. Si ei π

3 est racine, alors j est racine, mais j n’est pas dans 1 +U. Donc seuls 0 et 1 sont
racines.

e. En posant P = λXa(X − 1)b, on obtient λ = 0 ou 1 et a = b, donc P = [X(X − 1)]a,
ou P = 0.
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15 Démontrer que, pour tout P ∈ K[X] :

P (X + 1) =
+∞∑
k=0

P (k)(X)
k!

Utiliser la formule du binôme pour Xn, puis la linéarité.
Sinon on raisonne par récurrence sur n = deg P , en posant P = anXn + Q.
On peut aussi appliquer la formule de Taylor.

16 Résoudre l’équation
x3 − 8x2 + 23x − 28 = 0

sachant que la somme de deux des solutions est égale à la troisième.

On obtient S=
{

4, 2 ± i
√

3
}

.

17 Factoriser le polynôme
8X3 − 12X2 − 2X + 3

sachant que ses racines sont en progression arithmétique.

On obtient P = (2X + 1)(2X − 1)(2X − 3).

18 Déterminer tous les réels x, y, z tels que :

x + y + z = xy + xz + yz = 3

Les scalaires x, y, z sont racines d’un polynômes P = X3 − 3X2 + 3x + a où a est un réel.
On calcule P = (X − 1)3 + a + 1.
Les racines complexes sont donc 1 − 3

√
a + 1, 1 − j 3

√
a + 1, 1 − j2 3

√
a + 1.

Comme x, y, z sont réels alors a = −1 obligatoirement donc x = y = z = 1.

19 Soit A et B deux polynômes.

a. Démontrer que : AK[X] + BK[X] = (A ∧ B)K[X]
b. Soit C un autre polynôme. A-t-on : (AC) ∧ (BC) = (A ∧ B)C ?

a. Inclusion directe : si un polynôme s’écrit AU + BV alors il est multiple de A ∧ B.
Inclusion indirecte : utiliser la relation de Bézout.

b. En utilisant la question précédente on démontre que les polynômes (AC) ∧ (BC) et
(A ∧ B)C sont associés.
Ils sont égaux si et seulement si C est unitaire.
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20 Soit m et n deux entiers naturels non-nuls, soit r le reste de la division euclidienne
de n par m, et d = n ∧ m.
a. Soit A, B, C trois polynômes. On suppose qu’il existe un polynôme V tel que

A + BV + C = 0. Démontrer que A ∧ B = B ∧ C.
b. Démontrer que Xm − 1 divise Xn − Xr.

En déduire que Xr − 1 est le reste de la division euclidienne de Xn − 1 par Xm − 1.
c. Démontrer que :

(Xn − 1) ∧ (Xm − 1) = (Xm − 1) ∧ (Xr − 1)
puis que (Xn − 1) ∧ (Xm − 1) = (Xd − 1).

a. On démontre que A ∧ B et B ∧ C sont diviseurs l’un de l’autre, donc associés, puis ils
sont unitaires.

b. Xn − Xr = Xr(Xqm − 1) et Xm − 1 divise Xqm − 1.
Ensuite Xn − 1 = Xr(Xqm − 1) + Xr − 1.

c. On utilise la question précédente puis l’algorithme d’Euclide.

21 Soit m et n deux entiers naturels non-nuls, et d = m ∧ n.

a. Soit a un diviseur de n. Justifier que Ua ⊆ Un.
b. Démontrer que Un ∩Um = Ud.
c. En déduire que (Xn − 1) ∧ (Xm − 1) = (Xd − 1).

a. Comme a divise n alors : ζa = 1 =⇒ ζn = 1.
b. L’inclusion indirecte est conséquence de la question précédente.

L’inclusion directe se démontre grâce à la relation de Bézout.
c. On utilise (Xn − 1) = ∏

ζ∈Un
(X − ζ).

Les racines communes de Xn − 1 et Xm − 1 sont les éléments de Ud.
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22 Soit A1, . . . , An une famille de polynômes premiers entre eux deux à deux. Pour
tout k = 1, . . . , n on pose :

Bk =
n∏

i=1
i̸=k

Ai

Démontrer que les polynômes B1, . . . , Bn sont premiers entre eux dans leur ensemble.

Soit P irréductible divisant tous les Bk. Alors il divise B1, donc il existe i ̸= 1 tel que P
divise Ai.
Mais P divise Bi, donc il existe j ̸= i tel que P divise Aj. Donc P divise Ai ∧ Aj, ce qui
impose P = 1.

23 Polynômes de Tchebychev
Soit (Pn) la suite de polynômes définie par P0 = 1, P1 = X, et pour tout n ∈ N :

Pn+2 = 2XPn+1 − Pn

a. Calculer Pn pour n compris entre 0 et 5.
b. Déterminer, pour tout n ∈ N, le degré de Pn.
c. Démontrer que :

∀n ∈ N ∀x ∈ R cos (nx) = Pn(cos x)
d. Quelles sont les racines du polynôme Pn ?

a. P2 = 2X2 − 1 P3 = 4X3 − 3X P4 = 8X4 − 8X2 + 1 P5 = 16X5 − 20X3 + X

b. On démontre par récurrence double : ∀n ∈ N deg Pn = n

c. On utilise encore une démonstration par récurrence double.
d. Les n racines de Pn sont cos

(
π
2n

+ k π
n

)
pour k allant de 0 à n − 1, donc les cosinus de

π
2n

, 3π
2n

, . . . , (2n−1)π
2n

.
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24 Polynômes d’interpolation de Lagrange
Soit α0, α1, α2 trois scalaires distincts et :

P0 = (X − α1)(X − α2)
P1 = (X − α0)(X − α2)
P2 = (X − α0)(X − α1)

a. Calculer Pi(αj) pour tous i et j allant de 0 à 2.

Pour tout i = 0, 1, 2 on pose : Li = Pi/Pi(αi)
b. Démontrer que pour tout polynôme P de K2[X] :

P =
2∑

i=0
P (αi)Li

c. Soit β0, β1, β2 trois scalaires. Démontrer qu’il existe un et un seul polynôme de degré
au plus 2 tel que pour tout i = 0, 1, 2 : P (αi) = βi.

d. Application : déterminer l’unique parabole passant par les points de coordonnées
(−1, 1), (2, 1), (4, 11).

a. Pi(αj) = 0 si i ̸= j, sinon P0(α0) = (α0 − α1)(α0 − α2), etc.

b. Par définition des Li : Li(αj) =
®

1 si i = j

0 si i ̸= j

Posons Q =
2∑

i=0
P (αi)Li. Alors Q(αi) = P (αi) pour i = 0, 1, 2.

Le polynôme P − Q est de degré au plus 2 et admet au moins trois racines donc il est
nul.

c. Soit P =
2∑

k=0
βiLi. Alors P est de degré au plus 2 et vérifie P (αi)) = βi pour tout

i = 0, 1, 2.
Ceci démontre l’existence.
Si P est un polynôme de degré au plus 2 vérifiant P (αi) = βi pour tout i = 0, 1, 2,

alors P =
1∑

k=0
βiLi d’après la question précédente.

Ceci démontre l’unicité.
d. D’après la question précédente le polynôme P = L0 + L1 + 11L2 convient.

On obtient P = X2 − X − 1.
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