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Corrigé partiel du T. D. A9
Suites

1 Soit (un) la suite définie par u0 = 0 et :

∀n ∈ N un+1 = 1 + u2
n

4
a. Démontrer que (un) est majorée et croissante.
b. Démontrer que (un) et convergente et donner sa limite.
c. On suppose maintenant que u0 = 3. Démontrer que la suite (un) admet une limite

et donner cette limite.

On note f : x 7→ 1 + x2

4 l’itératrice de la suite (un). Sa courbe est une parabole que l’on
peut tracer.
On démontre que f admet 2 pour unique point fixe.
L’intervalle R+ est stable par f est u0 ∈ R+ donc la suite (un) est incluse dans R+.
Comme f est croissante sur R+ alors la suite (un) est monotone.
On montre que u1 ⩾ u0 (quel que soit la valeur de u0) donc la suite (un) est croissante.
On démontre qu’elle est majorée par 2 donc elle converge vers 2.
Si u0 = 3 alors on démontre par l’absurde qu’elle n’est pas convergente, et par théorème
de la limite monotone elle tend vers +∞.

2 Soit (un) la suite définie par u0 > 0 et :

∀n ∈ N un+1 = 1
1 + un

a. Démontrer que la suite (un) est bien définie et décrire ses variations.
b. Démontrer que les suites extraites (u2n) et (u2n+1) convergent et donner leurs limites.
c. Démontrer que la suite (un) converge.

a. Soit f : x 7→ 1
1+x l’itératrice de la suite (un).

Comme R+ est stable par f et u0 ∈ R+ alors la suite (un) est bien définie et incluse
dans R+.
Comme f est décroissante sur R+ alors la suite (un) n’est ni croissante, ni décroissante,
même à partir d’un certain rang.

b. Les suites extraites (u2n) et (u2n+1) vérifient la relation vn+1 = g(vn) avec g = f ◦ f ,
i.e., g(x) = x+1

x+2 .
La fonction g est croissante sur R+ donc les suites extraites sont monotones.
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On démontre que l’une est croissante majorée par α =
√

5−1
2 et l’autre décroissante

minorée par α, on en déduit qu’elles convergent et leur limite est α.
c. Par théorème, comme (u2n) et (u2n+1) convergent vers la même limite alors la suite

(un) converge vers cette limite, c’est-à-dire vers α.

3 Déterminer les termes généraux des suites définies par :

a. u0 = 4 et ∀n ∈ N un+1 = 2un − 8
b. u0 = 2 et ∀n ∈ N un+1 = 3 − un
c. u0 = 0 et ∀n ∈ N un+1 = 1

2un − 2.

a. un = 8 − 2n+2 b. un = 1
2(3 + (−1)n) c. un = 4(2−n − 1).

4 Déterminer les termes généraux des suites définies par :

a. u0 = 0, u1 = 1 et ∀n ∈ N un+2 = 4un+1 − 3un
b. u0 = 0, u1 = 1 et ∀n ∈ N un+2 = 2un+1 − un
c. u0 = 2, u1 = −1 et ∀n ∈ N un+2 = 2un+1 + 24un
d. u0 = 1, u1 = −4 et ∀n ∈ N un+2 = −6un+1 − 9un
e. u0 = 2, u1 = 0 et ∀n ∈ N un+2 = 2un+1 − 2un

Donner une forme réelle de cette suite.
f. u0 = 1, u1 = 1 et ∀n ∈ N un+2 =

√
3un+1 − un

Démontrer que cette suite est périodique.

a. un = 1
2(3n − 1)

b. un = n

c. un = 1
10(7.6n + 13(−4)n)

d. un =
(
1 + n

3
)
(−3)n = −(n + 3)(−3)n−1

e. un = (1 + i)(n+1) + (1 − i)(n+1) =
√

2(n+3) cos (n+1)π
4

f. un = αei
π
6 + βe−iπ

6 avec α = 1
2 − i

2(2 −
√

3) et β = 1
2 + i

2(2 −
√

3)

ou un = cos nπ
6 + (2 −

√
3) sin nπ

6

Cette suite est 12-périodique.
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5 Pour tout n ∈ N on pose :

un =
Ä

1+
√

13
2

än
+
Ä

1−
√

13
2

än
a. Trouver une relation de récurrence double vérifiée par la suite (un)n∈N.
b. Démontrer que tous les un sont entiers.

On calcule que u0 = 2 et u1 = 1.
On démontre que : ∀n ∈ N un+2 = un+1 + 3un

En effet, si une suite vérifie une telle relation de double-récurrence alors il existe deux
réels α et β tels que :

∀n ∈ N un = α

Ç
1 +

√
13

2

ån
+ β

Ç
1 −

√
13

2

ån
.

Si u0 = 2 et u1 = 1 alors on obtient bien α = β = 1, donc il s’agit de la suite (un).
Par récurrence double on démontre que la suite (un) est entière.

6 Soit (un)n∈N une suite telle que u0 > 0, u1 = 1, et pour tout n ∈ N :

un+2 =
√

unun+1

Démontrer que cette suite converge et exprimer sa limite en fonction de u0 et u1.

Par récurrence double la suite (un) est strictement positive.
On pose vn = ln un.
Alors vn+2 = 1

2(vn + vn+1). On démontre qu’il existe (α, β) ∈ R2 tel que :

∀n ∈ N vn = α + β

Å
−1

2

ãn
.

On obtient α = 1
3 ln u0 et β = 2

3 ln u0.

On en déduit : ∀n ∈ N un = u
1
3 + 2

3(− 1
2)n

0

Cette suite converge vers 3
√

u0.
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7 Soit A une matrice carrée inversible de taille (n, n) satisfaisant A + A−1 = In.
Calculer Ap + A−p pour tout p ∈ N.

En développant (A + A−1)2 on montre que A2 + A−2 = −In.
De même on montre que A3 + A−3 = −2In.
On démontre par récurrence qu’il existe une suite (ap)p∈N telle que Ap + A−p = apIn pour
tout p ∈ N.
On obtient a0 = 2, a1 = 1, puis ap+1 = ap − ap−1.
On reconnait une suite double-récurrence. On obtient ap = αei

pπ
3 +βe−i pπ

3 avec α = β = 1,
puis ap = 2 cos pπ

3 .

Finalement : ∀p ∈ N Ap + A−p = 2 cos pπ

3 In

Un exemple de telle matrice : A =
Å

1 −1
1 0

ã
.

8 Soit (un) une suite complexe définie par u0 ∈ C et :

∀n ∈ N un+1 = 2un + un
3

Étudier la limite de cette suite.

On note xn et yn les parties réelles et imaginaires respectivement de un.
On démontre que pour tout n ∈ N : xn = x0 et yn = y0

3n

Donc (un) converge vers x0 = Re(u0).

9 Soit (un) et (vn) deux suites réelles vérifiant pour tout entier n :®
un+1 = 1

3(un − 2vn) + 2
vn+1 = 1

3(2un + vn) − 2
Étudier la convergence des suites (un) et (vn). On pourra utiliser les complexes.

On définit : ∀n ∈ N zn = un + ivn.
On obtient alors : ∀n ∈ N zn+1 = 1+2i

3 zn + 2 − 2i

Cette suite est arithmético-géométrique.
On calcule son terme général : ∀n ∈ N zn = 3 + (z0 − 3)

(1+2i
3

)n
Comme

∣∣1+2i
3

∣∣ < 1 alors la suite (zn) converge vers 3.
Donc les suites (un) et (vn) convergent respectivement vers 3 et 0.
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10 Soit q un nombre complexe de module 1.
Démontrer que la suite (qn)n∈N converge si et seulement si q = 1.
On pourra considérer la suite (qn+1)n∈N.

Si q = 1 alors la suite (qn)n∈N est constante égale à 1 donc elle converge vers 1.
Réciproquement, supposons que la suite (qn)n∈N converge et notons ℓ sa limite.
La suite (|qn|) est constante égale à 1, donc elle converge vers 1, ce qui montre que |ℓ| = 1,
et donc ℓ est non-nul.
Par décalage la suite (qn+1)n∈N converge également vers ℓ.
Par quotient la suite

Ä
qn+1

qn

ä
converge vers ℓ

ℓ
= 1. Or cette suite est égale à q, donc q = 1.

11 Pour tout n ∈ N on pose un =
n∑
k=1

1√
k

puis :

vn = un − 2
√

n wn = un − 2
√

n + 1
a. Démontrer que les suites (vn) et (wn) sont adjacentes.
b. En déduire que le suite (un) tend vers +∞.
c. Démontrer que un ∼ 2

√
n.

a. On démontre que (vn) est décroissante, (wn) est croissante, et (vn − wn) converge vers
0. Pour ceci on utilise des quantités conjuguées, et on considére wn − wn−1 plutôt que
wn+1 − wn.

b. Par théorème les suites (vn) et (wn) convergent vers la même limite.
Comme un = vn + 2

√
n alors (un) tend vers +∞.

c. Pour tout n ∈ N∗ : un

2
√
n

= vn

2
√
n

+ 1.
Comme (vn) est convergente et (2

√
n) tend vers +∞ alors vn

2
√
n

converge vers 0.
Ainsi un

2
√
n

converge vers 1 et un ∼ 2
√

n.

12 Soit (un) et (vn) deux suites définies par u0 = 0, v0 = 12 et pour tout n ∈ N :®
un+1 = 1

2(un + vn)
vn+1 = 1

3(un + 2vn)

a. Démontrer que les suites (un) et (vn) sont adjacentes.
b. Calculer leur limite.

On démontre :
• ∀n ∈ N vn+1 − un+1 = 1

6(vn − un)
La suite (vn − un) est géométrique, donc : ∀n ∈ N vn − un = 12

6n .
Cette suite converge vers 0.

• ∀n ∈ N un+1 − un = 1
2(vn − un) = 6

6n > 0
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Donc la suite (un) est croissante.
• ∀n ∈ N vn+1 − vn = −1

3(vn − un) = − 4
6n < 0

Donc la suite (vn) est décroissante.
Les suites (un) et (vn) sont adjacentes, et donc par théorème elles convergent vers la même
limite.
Pour calculer cette limite on peut remarquer que un est la somme des termes d’une suite
géométrique. En effet par télescopage :

∀n ∈ N un =
n−1∑
k=0

(uk+1 − uk) =
n−1∑
k=0

6
6k = 36

5

Å
1 −
Å1

6

ãnã
Les suites (un) et (vn) convergent vers 36

5 .

13 Soit A et B deux parties non-vides de R telles que :

∀a ∈ A ∀b ∈ B a ⩽ b.

a. Démontrer que A admet une borne supérieure et B admet une borne inférieure.
b. Démontrer que Sup A ⩽ Inf B.

a. Comme la partie B est non vide alors elle contient au moins un élément b0.
Ainsi : ∀a ∈ A a ⩽ b0.
Ceci montre que la partie A est majorée par b0.
La partie A est majorée et non-vide, donc par la propriété de la borne supérieure elle
admet un plus petit majorant, i.e., une borne supérieure.
De même la partie A admet un élément a0, lequel est un minorant de B. La partie B
est non-vide minorée donc elle admet une borne inférieure.

b. Soit b un élément de B. Alors b est un majorant de A, car : ∀a ∈ A a ⩽ b.
Or Sup A est le plus petit majorant de A, donc Sup A ⩽ b.
On a démontré que : ∀b ∈ B Sup A ⩽ b.
Ainsi Sup A est un minorant de B. Or la borne inférieure de B est par définition le
plus grand minorant de B, donc Sup A ⩽ Inf B.

page 6/20



MPSI – Mathématiques Corrigé partiel du TD A9 : Suites

14 Soit A et B deux parties majorées non vides de R.

a. Démontrer que si A ⊆ B alors :
Sup A ⩽ Sup B

b. Démontrer que A ∪ B est majorée et que :
Sup(A ∪ B) = Max {Sup A, Sup B}

c. Démontrer que A ∩ B est majorée, et que si elle est non-vide alors :
Sup(A ∩ B) ⩽ Min {Sup A, Sup B}

Montrer que l’égalité n’a pas lieu en général.
d. On note A + B = {x + y | x ∈ A, y ∈ B}.

Démontrer que A + B est majorée et que :
Sup (A + B) = Sup A + Sup B

Comme le parties A et B sont non-vides majorées alors elles admettent une borne supé-
rieure chacune, i.e., Sup A et Sup B sont définies.
a. Supposons que A ⊆ B.

La borne supérieure de B est un majorant de B, donc : ∀b ∈ B b ⩽ Sup B.
Comme A ⊆ B alors : ∀a ∈ A a ∈ B donc a ⩽ Sup B.
Ceci montre que Sup B est un majorant de A. Or Sup A est le plus petit majorant de
A, donc Sup A ⩽ Sup B.

b. Soit M = Max {Sup A, Sup B}.
Comme Sup A est un majorant de A et Sup A ⩽ M alors M est un majorant de A.
De même M est un majorant de B.
Ainsi M est un majorant de A et de B. Si x est un élément de A ∪ B alors x ∈ A ou
x ∈ B, donc x ⩽ Sup A ⩽ M ou x ⩽ Sup B ⩽ M , et finalement x ⩽ M .
Ceci montre que M est un majorant de A ∪ B.
La partie A ∪ B est non-vide car A et B sont non-vides, elle est majorée, donc elle
admet une borne supérieure. Comme M en est un majorant alors Sup(A ∪ B) ⩽ M .
En effet la borne supérieure de A ∪ B est son plus petit majorant.
Comme A ⊆ A ∪ B et B ⊆ A ∪ B alors d’après la question (a) :

Sup A ⩽ Sup(A ∪ B) et Sup B ⩽ Sup(A ∪ B).

On en déduit Max {Sup A, Sup B} ⩽ Sup(A ∪ B), i.e., M ⩽ Sup(A ∪ B).
Par antisymétrie : Sup(A ∪ B) = Max {Sup A, Sup B}.

c. Comme A ∩ B ⊆ A et A est majorée alors d’après la question (a) A ∩ B est majorée.
Si de plus elle est non-vide alors elle admet une borne supérieure.
D’après la question (a), comme A ∩ B ⊆ A et A ∩ B ⊆ B alors :

Sup(A ∩ B) ⩽ Sup A et Sup(A ∩ B) ⩽ Sup B.

Ceci montre que Sup(A ∩ B) ⩽ Min {Sup A, Sup B}.
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Montrons par un exemple que cette inégalité peut être stricte.
Soit A = [0, 2] et B = [0, 1] ∪ [3, 4]. Alors A ∩ B = [0, 1].
De plus Sup A = 2, Sup B = 4 et Sup(A ∩ B) = 1 < Min {Sup A, Sup B} = 2.
L’inégalité est stricte.

d. Notons a = Sup A et b = Sup B.
Alors a est un majorant de A et b est un majorant de B, donc :

∀(x, y) ∈ A × B x + y ⩽ a + b.

Ceci montre que a + b est un majorant de A + B.
La partie A + B est non-vide car A et B sont non-vides, elle est majorée donc elle
admet une borne supérieure.
Comme a + b est un majorant de A + B alors Sup(A + B) ⩽ a + b.
Deux méthodes pour démontrer l’inégalité inverse :
Méthode 1. Soit ε > 0. alors a − ε

2 < a donc a − ε
2 n’est pas un majorant de A, puisque

a est le plus petit majorant de A. Donc il existe x ∈ A tel que a − ε < x. De même il
existe y ∈ B tel que b − ε

2 < y.
On a donc par somme : a + b − ε < x + y.
Or x + y ∈ A + B, et Sup(A + B) est un majorant de A + B, donc x + y ⩽ Sup(A + B).
On a démontré :

∀ε > 0 a + b − ε < Sup(A + B).
Ceci donne a + b ⩽ Sup(A + B), puis par antisymétrie :

Sup(A + B) = a + b = Sup A + Sup B.

Méthode 2. Par propriété du cours, si a = Sup A alors il existe une suite d’éléments de
A convergeant vers a.
Soit (an) une telle suite, et de même soit (bn) une suite d’éléments de B convergeant
vers b.
Pour tout n ∈ N, an + bn appartient à A + B, donc :

∀n ∈ N an + bn ⩽ Sup(A + B)

Comme (an) converge vers a et (bn) converge vers b alors par théorème de comparaison :

a + b ⩽ Sup(A + B).

Enfin par antisymétrie :

Sup(A + B) = a + b = Sup A + Sup B.
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15 Soit f : [0, 1] → [0, 1] croissante, et :

A = {x ∈ [0, 1] | f(x) ⩾ x}.

a. Démontrer que A possède une borne supérieure.
b. Soit s la borne supérieure de A. Démontrer que s est un point fixe de f , i.e., que

f(s) = s.

a. A est majorée par 1, non-vide car elle contient 0, donc elle possède une borne supérieure.
b. Si x ∈ A alors x ⩽ s, donc par croissance f(x) ⩽ f(s).

Or x ⩽ f(x) car x ∈ A, donc x ⩽ f(s).
Ceci montre que f(s) est un majorant de A, et donc s ⩽ f(s).
Si on suppose que s < f(s), alors il existe t ∈ [0, 1] tel que s < t < f(s).
Mais alors par croissance f(s) ⩽ f(t), donc t ⩽ f(t), puis t ∈ A.
Ceci contredit le fait que s est un majorant de A, et donc s = f(s).

16 Soit A une partie de R non majorée.
Démontrer qu’il existe une suite (un)n∈N d’éléments de A tendant vers +∞.

Comme la partie A n’est pas majorée alors pour tout n ∈ N il existe un ∈ A tel que
un ⩾ n.
Par théorème de comparaison la suite (un) tend vers +∞.
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17 Soit (un) une suite et ℓ un réel. Que signifient, ou qu’impliquent les propositions
suivantes ?
a. ∀ε > 0 ∀N ∈ N ∀n ∈ N n ⩾ N =⇒ |un − ℓ| ⩽ ε

b. ∃ε > 0 ∀N ∈ N ∀n ∈ N n ⩾ N =⇒ |un − ℓ| ⩽ ε

c. ∃ε > 0 ∃N ∈ N ∀n ∈ N n ⩾ N =⇒ |un − ℓ| ⩽ ε

d. ∀ε > 0 ∃N ∈ N ∀n ∈ N n ⩾ N =⇒ |un − ℓ| ⩽ ε

e. ∃N ∈ N ∀ε > 0 ∀n ∈ N n ⩾ N =⇒ |un − ℓ| ⩽ ε

f. ∀N ∈ N ∀ε > 0 ∀n ∈ N n ⩾ N =⇒ |un − ℓ| ⩽ ε

g. ∃N ∈ N ∃ε > 0 ∀n ∈ N n ⩾ N =⇒ |un − ℓ| ⩽ ε

h. ∀N ∈ N ∃ε > 0 ∀n ∈ N n ⩾ N =⇒ |un − ℓ| ⩽ ε

a. (un) est constante égale à ℓ.
b. (un) est bornée.
c. (un) est bornée.
d. (un) converge vers ℓ.
e. (un) est stationnaire en ℓ.
f. (un) est constante égale à ℓ.
g. (un) est bornée.
h. (un) est bornée.

18 Soit (un) une suite réelle. Traduire les assertions suivantes à l’aide de quantifica-
teurs :
a. La suite (un) est bornée.
b. La suite (un) est stationnaire.
c. La suite (un) n’est pas croissante.
d. La suite (un) n’est croissante à partir d’aucun rang.
e. La suite (un) ne converge pas vers 0.

a. ∃M ∈ R ∀n ∈ N |un| ⩽ M

b. ∃N ∈ N ∀n ∈ N n ⩾ N =⇒ un = un+1

c. ∃n ∈ N un > un+1

d. ∀N ∈ N ∃n ∈ N (n ⩾ N et un > un+1)
e. ∃ε > 0 ∀N ∈ N ∃n ∈ N n ⩾ N et |un| > ε

page 10/20



MPSI – Mathématiques Corrigé partiel du TD A9 : Suites

19 Soit (un) une suite de réels strictement positifs. On suppose que la suite
Ä
un+1
un

ä
converge vers un réel a élément de [0, 1[. Le but de cet exercice est de démontrer que
la suite (un) converge vers 0.
a. On pose b = 1+a

2 . Justifier qu’il existe p ∈ N tel que : ∀n ⩾ p un+1 ⩽ bun
b. Pour tout entier naturel n, donner une majoration de un+p en fonction de b, n et up.
c. Conclure.
Seconde démonstration :
d. Démontrer que la suite (un) est décroissante à partir d’un certain rang, puis qu’elle

est convergente, et enfin que sa limite ne peut être non-nulle.
Applications :
e. Démontrer que la suite (n!) est négligeable devant la suite (nn).
f. Démontrer que pour tout réel α > 1 la suite (nn) est négligeable devant la suite

((n!)α).

a. Soit ε = b − a. Alors ε = 1−a
2 et comme a < 1 alors ε > 0.

La suite
Ä
un+1
un

ä
converge vers a donc par définition de la convergence il existe un entier

p tel que :
∀n ∈ N n ⩾ p =⇒

∣∣∣∣un+1

un
− a

∣∣∣∣ ⩽ ε

Ceci donne un+1

un
−a ⩽ b−a puis un+1 ⩽ bun car un est positif, par supposition

de l’énoncé.
On a donc justifié qu’il existe un entier p tel que :

∀n ∈ N n ⩾ p =⇒ un+1 ⩽ bun

b. Pour tout n ∈ N on définit la propriété :

Pn un+p ⩽ bnup

On démontre par récurrence que cette propriété est vraie pour tout n ∈ N.
Initialisation. Pour n = 0 la propriété est : up ⩽ b0up. Elle est valide car b0 = 1.
Hérédité. Supposons que pour un certain n ∈ N la propriété est valide.
D’après la question précédente, comme n + p ⩾ p alors

un+p+1 ⩽ bun+p

L’hypothèse de récurrence est :
un+p ⩽ bnup

On obtient par transitivité :
un+p+1 ⩽ bn+1up

Ceci montre que la propriété est vraie au rang n + 1, et donc justifie l’hérédité.
Conclusion. Par récurrence, pour tout n ∈ N : un+p ⩽ bnup
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c. La suite (un) est supposée strictement positive, donc la question précédente donne :

∀n ∈ N 0 < un+p ⩽ bnup

On remarque que b < 1. En effet par hypothèse a < 1 donc b = a+1
2 < 1+1

2 = 1.
Ceci implique que la suite (bnup)n∈N converge vers 0 lorsque n tend vers +∞.
Par théorème d’encadrement la suite (un+p)n∈N converge vers 0.
Par décalage la suite (un)n∈N converge vers 0.

d. La suite
Ä
un+1
un

ä
n∈N

converge vers a. Comme a < 1 alors à partir d’un certain rang
un+1
un

⩽ 1.
En effet, si on pose ε = 1 − a alors ε > 0 donc à partir d’un certain rang :

a − ε ⩽
un+1

un
⩽ a + ε = 1

Comme (un) est strictement positive, alors ceci montre qu’à partir d’un certain rang :
un+1 ⩽ un

Or la suite (un) est minorée par 0. Elle est décroissante à partir d’un certain rang et
minorée par 0 donc par théorème elle converge.
Soit ℓ sa limite.
Comme la suite (un) est positive alors par théorème de comparaison ℓ ⩾ 0. En effet :

(∀n ∈ N un > 0) =⇒ lim un ⩽ 0

On raisonne par l’absurde en supposant que ℓ > 0.
Dans ce cas par décalage (un+1) converge vers ℓ, puis par quotient

Ä
un+1
un

ä
converge vers

ℓ
ℓ

= 1. Or nous savons que
Ä
un+1
un

ä
converge vers a et que a < 1. Cette contradiction

montre que ℓ = 0.
Nous avons donc de nouveau démontré que la suite (un)n∈N converge vers 0.

e. Posons un = n!
nn . Ceci est défini pour tout n ∈ N∗, la suite (un) est strictement positive

et :
∀n ∈ N∗ un+1

un
= (n + 1)!

n!
nn

(n + 1)(n+1) = nn

(n + 1)n =
Å

1 − 1
n + 1

ãn
Ceci donne

un+1

un
= en ln (1− 1

n+1)

Comme − 1
n+1 → 0 alors par équivalence usuelle : ln

Ä
1 − 1

n+1

ä
∼ − 1

n+1

Par produit n ln
Ä
1 − 1

n+1

ä
∼ − n

n+1 ∼ −1. Ceci montre que
Ä
n ln
Ä
1 − 1

n+1

ää
converge

vers −1 puis la fonction exponentielle étant continue, que
Ä
un+1
un

ä
converge vers e−1.

Comme la suite (un) est strictement positive et e−1 ∈ [0, 1[, alors on peut appliquer le
résultat démontré dans les question précédentes. Il implique que la suite (un) converge
vers 0.
Ainsi n!

nn converge vers 0 donc par définition la suite (n!) est négligeable devant la suite
(nn) : n! = o(nn)
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f. Soit α un réel tel que α > 1. On pose maintenant, pour tout n ∈ N : vn = nn

(n!)α

On calcule, toujours pour tout n ∈ N∗ :

vn+1

vn
= (n + 1)(n+1)

nn
(n!)α

((n + 1)!)α = (n + 1)n
nn

(n + 1)
Å 1

(n + 1)

ãα
=
Å

1 + 1
n

ãn 1
(n + 1)α−1

On écrit alors : vn+1
vn

= en ln (1+ 1
n) 1

(n+1)α−1

Comme 1
n

→ 0 alors par équivalence usuelle : ln
(
1 + 1

n

)
∼ 1

n

Par produit n ln
(
1 + 1

n

)
∼ 1. La suite

(
n ln

(
1 + 1

n

))
converge donc vers 1, puis l’ex-

ponentielle étant continue :
(

en ln (1+ 1
n)
)

converge vers e1 = e.

La suite
Ä

1
(n+1)α−1

ä
converge vers 0 car α − 1 > 0.

Par produit la suite
Ä
vn+1
vn

ä
converge vers 0.

Ainsi la suite
Ä
vn+1
vn

ä
converge vers un élément de [0, 1[, la suite (vn) est strictement

positive, donc d’après le résultat démontré dans les premières questions de l’exercice
la suite (vn) converge vers 0.
Ceci montre que la suite (nn) est négligeable devant la suite ((n!)α) : nn = o((n!)α)

20 Soit (un)n∈N une suite. On suppose que un + un+1 ∼ 1
n
.

a. Démontrer que si la suite (un) est décroissante alors un ∼ 1
2n .

b. Justifier que le résultat est faux si la suite (un) n’est pas supposée décroissante.
Considérer par exemple un = 1

2n + (−1)n
√
n

.

a. Comme la suite (un)n∈N est décroissante alors pour tout n ∈ N∗ : un−1 ⩾ un ⩾ un+1,
ce qui donne :

n(un−1 + un) ⩾ 2nun ⩾ n(un + un+1).
Or par énoncé un + un+1 ∼ 1

n
donc (n(un + un+1)) converge vers 1.

De plus par décalage un−1 + un ∼ 1
n−1 , puis :

n(un−1 + un) = n

n − 1 × (n − 1)(un−1 + un) ∼ n

n − 1 × 1 −−−−→
n→+∞

1.

Par théorème d’encadrement la suite (2nun) converge vers 1, et un ∼ 1
2n .

b. Soit un = 1
2n + (−1)n

√
n

pour tout n ∈ N∗.

Comme 1
2n = o

Ä
1√
n

ä
alors un ∼ (−1)n

√
n

.
Cependant on calcule :

∀n ∈ N∗ un + un+1 = 2n + 1
2n(n + 1) + (−1)n 1√

n(n + 1)
(√

n + 1 +
√

n
)

On montre que 2n+1
2n(n+1) ∼ 1

n
et 1√

n(n+1)(√
n+1+

√
n) ∼ 1

2n
√
n
.
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Comme 1
n

√
n

= o
( 1
n

)
alors un + un+1 ∼ 1

n
.

Mais la suite (un) n’est pas équivalente à la suite
( 1

2n
)
, car un ∼ (−1)n

√
n

.

21 Soit (un)n∈N une suite définie par u0 > 0 et pour tout n ∈ N :

un+1 = u2
n

1 + nun
a. Démontrer que la suite (un) converge.
b. Déterminer sa limite.
c. Démontrer que un = O

Ä
1

(n−1)!

ä
.

On démontre par quotient que la suite (un) est décroissante à partir du rang 1.
Par récurrence elle est positive, donc minorée par 0.
Par théorème, la suite (un) est décroissante minorée par convergente.
Comme la suite (un) est minorée par 0 alors par théorème de comparaison sa limite est
positive :

(∀n ∈ N un ⩾ 0) =⇒ lim un ⩾ 0
Notons ℓ = lim un.

On écrit : ∀n ∈ N∗ un+1 =
un × un

n
1
n

+ un

Supposons que ℓ > 0. Alors un

n
→ 0 et

( 1
n

+ un
)

→ ℓ donc par produit et quotient
un+1 → 0. Or par décalage (un+1) converge aussi vers ℓ. Cette contradiction montre que
ℓ = 0.
Ainsi la suite (un) converge vers 0.
Pour démontrer que un = O

Ä
1

(n−1)!

ä
on pose vn = (n − 1)!un.

On montre que vn+1
vn

= nun

1+nun
< 1, donc la suite (vn) est décroissante. Elle est donc bornée

(car elle est positive et majorée par v1). Ainsi un = O
Ä

1
(n−1)!

ä
.
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22 Pour tout n ∈ N∗ on pose fn(x) = xn − nx + 1.

a. Démontrer que pour tout entier n ⩾ 2 il existe un unique réel un ∈ [0, 1] tel que
fn(un) = 0.

b. Démontrer que pour tout n ⩾ 2 : 1
n
⩽ un ⩽ 2

n

Que peut-on en déduire pour la suite (un)n⩾2 ?
c. Donner un équivalent simple de (un).

a. La fonction fn est dérivable, de dérivée : f ′
n(x) = n(xn−1 − 1).

Elle est donc strictement décroissante sur l’intervalle [0, 1].
Elle est continue car polynomiale.
De plus fn(0) = 1, fn(1) = 2 − n donc elle réalise une bijection de [0, 1] dans [2 − n, 1].
Soit n ⩾ 2. Alors 2 − n ⩽ 0, donc 0 ∈ [2 − n, 1], et donc par définition d’une bijection
il existe un et un seul xn ∈ [0, 1] tel que fn(un) = 0.

b. Comme fn(un) = 0 alors (un)n = nun − 1. Or un ∈ [0, 1] donc (un)n ∈ [0, 1], et donc
nun − 1 ∈ [0, 1]. Ceci donne 0 ⩽ nun − 1 ⩽ 1, d’où le résultat.
On peut aussi remarquer que fn( 1

n
) = 1

nn > 0 et fn( 2
n
) =

( 2
n

)n − 1 < 0, donc fn( 1
n
) >

fn(un) > fn( 2
n
) et comme fn est strictement décroissante alors 1

n
< un < 2

n
.

On en déduit par encadrement que la suite (un) converge vers 0.
c. On peut également écrire :

∀n ∈ N∗ 1
nn

⩽ unn ⩽
Å 2

n

ãn
= en ln 2

n

Par encadrement la suite (un)n converge vers 0 donc (nun − 1) aussi, et ainsi un ∼ 1
n
.

23 Pour tout n ∈ N∗ on pose fn(x) = xn + x − 1.

a. Démontrer que pour tout n ∈ N∗ il existe un unique un ∈ R∗
+ tel que fn(un) = 0.

b. Démontrer que la suite (un)n∈N∗ converge.
c. Déterminer sa limite.
d. Démontrer que 1

n
= o(1 − un).

a. La fonction fn est continue, strictement croissante sur R∗
+ car sa dérivée est f ′

n(x) =
nxn−1 + 1.
Elle réalise donc une bijection de R∗

+ dans ]−1, +∞[.
Il existe donc un et un seul réel un ∈ R∗

+ tel que fn(un) = 0.
b. Comme fn(un) alors unn = 1 − un, puis fn+1(un) = −(1 − un)2.

Comme fn+1 est strictement croissante et fn+1(un) < fn+1(un+1) alors un < un+1.
La suite (un) est donc croissante.
Comme fn(n) = 1 alors un est majorée par 1.
Par théorème, la suite (un) est croissante majorée donc elle converge.
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c. Soit ℓ = lim un. Alors ℓ ∈
[1

2 , 1
]

car u1 = 1
2 .

Si ℓ < 1 alors unn tend vers 0, donc un tend vers 1. Ainsi un tend vers 1.
d. Comme fn(1) = 1 alors 0 < un < 1, donc unn = 1 − un > 0.

L’égalité unn = 1−un donne n ln un = ln(1−un). Comme un −−→ 1 alors ln un ∼ un−1,
donc n(un − 1) ∼ ln(1 − un). Ceci donne n(un − 1) −−→ −∞, puis 1

n
= o(1 − un).

24 Soit (un)n∈N une suite. Converge-t-elle si :

a. Les suites (u2n) et (u2n+1) convergent ?
b. Les suites (u2n), (u2n+1) et (u3n) convergent ?
c. Les suites (u2n), (u3n) et (u5n) convergent ?
d. La suite (un) est croissante et la suite (u2n) converge ?

a. La réponse est négative. Exemple : un = (−1)n.
b. La réponse est positive.

La suite (u6n) est extraite des suites (u2n) et (u3n) donc elle converge vers leur limite,
et ainsi celles-ci sont égales.
La suite (u6n+3) est extraite des suites (u2n+1) et (u3n) donc elle converge vers leur
limite, et ainsi celles-ci sont égales.
Les suites (u2n) et (u2n+1) convergent vers la même limite donc la suite (un) converge.

c. La réponse est négative.
Exemple : la suite un = 1 si n est une puissance de 7, 0 sinon.

d. La réponse est positive.
L’encadrement u2n ⩽ u2n+1 ⩽ u2(n+1) montre que la suite (u2n+1) converge vers la
même limite que la suite (u2n).

25 Pour tout n ∈ N on pose un = cos (π
√

n).
La suite (un)n∈N converge-t-elle ?

La suite extraite (un2) vérifie : ∀n ∈ N un2 = cos(πn) = (−1)n

Cette suite extraite diverge. Or toute suite extraite d’une suite convergente converge, donc
la suite (un) diverge.
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26 Soit (un)n∈N une suite non majorée.
Démontrer qu’il existe une suite extraite de (un) tendant vers +∞.

On construit par récurrence une suite (uφ(n))n∈N vérifiant pour tout n ∈ N : uφ(n) ⩾ n

Initialisation. Comme la suite un n’est pas bornée alors il existe m ∈ N tel que um ⩾ 0.
On pose φ(0) = m, ainsi on a bien uφ(0) ⩾ 0.
Hérédité. Soit n ∈ N. On suppose qu’on a déterminé un entier φ(n) tel que uφ(n) ⩾ n.
La suite (uk)k>φ(n) n’est pas majorée. En effet la suite (uk)0⩽k⩽φ(n) est finie donc majorée,
donc si la suite (uk)k>φ(n) était majorée alors la suite (un)n∈N serait majorée, ce qui est
supposé faux.
Il existe donc k > φ(n) tel que uk ⩾ n + 1. On pose φ(n + 1) = k. On a alors bien
uφ(n+1) ⩾ n + 1, et φ(n + 1) > φ(n).
Conclusion. On a construit une fonction φ : N → N strictement croissante telle que :

∀n ∈ N uφ(n) ⩾ n

La suite (uφ(n)) ainsi construite est extraite de la suite (un) et tend vers +∞ par théorème
de comparaison.

27 Une suite (un)n∈N est une suite de Cauchy si :

∀ε > 0 ∃N ∈ N ∀(p, q) ∈ N (p ⩾ N et q ⩾ N) =⇒ |up − uq| ⩽ ε

a. Démontrer que si une suite est convergente alors elle est de Cauchy.
b. Soit (un)n∈N une suite de Cauchy.

(i) Démontrer que la suite (un)n∈N est bornée.
(ii) En déduire qu’elle est convergente.

a. Soit (un)n∈N une suite convergente, et soit ℓ sa limite.
Démontrons que la suite (un)n∈N est une suite de Cauchy.
Soit ε > 0. Alors ε

2 > 0. Comme la suite (un)n∈N converge vers ℓ alors :

∃N ∈ N ∀n ∈ N
(

n ⩾ N =⇒ |un − ℓ| ⩽ ε

2

)
Soit p et q deux entiers. D’après ce qui précède, si p ⩾ N et q ⩾ N alors :

|up − ℓ| ⩽ ε

2 et |uq − ℓ| ⩽ ε

2
D’après l’inégalité triangulaire :

|(up − ℓ) − (uq − ℓ)| ⩽ |up − ℓ| + |uq − ℓ|

On en déduit :
|up − uq| ⩽

ε

2 + ε

2 = ε
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On a démontré que :

∀ε > 0 ∃N ∈ N ∀(p, q) ∈ N (p ⩾ N et q ⩾ N) =⇒ |up − uq| ⩽ ε

La suite (un)n∈N est bien une suite de Cauchy.
b. (i) La suite (un)n∈N est une suite de Cauchy, donc en particulier pour ε = 1, comme

ε > 0 alors :

∃N ∈ N ∀(p, q) ∈ N (p ⩾ N et q ⩾ N) =⇒ |up − uq| ⩽ 1

Si q = N alors q ⩾ N donc :

∀p ∈ N p ⩾ N =⇒ |up − uN | ⩽ 1
=⇒ uN − 1 ⩽ up ⩽ uN + 1

Tous les termes un de la suite pour n ⩾ N sont dans l’intervalle [uN − 1, uN + 1],
donc ils forment un ensemble borné.
Les termes pour 0 ⩽ n < N sont en nombre fini donc ils forment un ensemble
borné également.
Finalement la suite (un)n∈N est bornée.

(ii) La suite (un) est bornée donc d’après le théorème de Bolzano-Weierstrass elle
admet une suite extraite convergente.
Notons (uφ(n)) une telle suite, c’est-à-dire que φ : N → N est une fonction stricte-
ment croissante.
Soit ℓ la limite de la suite extraite (uφ(n)).
Démontrons que la suite (un) converge vers ℓ.
Soit ε > 0.
Alors ε

2 > 0. Comme la suite (un) est une suite de Cauchy alors :

∃N1 ∈ N ∀(p, q) ∈ N (p ⩾ N1 et q ⩾ N1) =⇒ |up − uq| ⩽
ε

2
Soit n un entier supérieur ou égal à N1. Comme la fonction φ : N → N est
strictement croissante alors par propriété φ(n) ⩾ n, et donc φ(n) ⩾ N1.
Comme n ⩾ N1 et φ(n) ⩾ N1 alors :

∣∣un − uφ(n)
∣∣ ⩽ ε

2 .
Comme la suite (uφ(n)) converge vers ℓ alors par définition de la convergence il
existe un entier N2 tel que :

∀n ∈ N n ⩾ N2 =⇒
∣∣uφ(n) − ℓ

∣∣ ⩽ ε

2
Soit N0 = Max {N1, N2}. Pour tout n ∈ N, si n ⩾ N0 alors n ⩾ N1 et n ⩾ N2
donc : ∣∣un − uφ(n)

∣∣ ⩽ ε

2 et
∣∣uφ(n) − ℓ

∣∣ ⩽ ε

2
Par inégalité triangulaire :∣∣(un − uφ(n)) + (uφ(n) − ℓ)

∣∣ ⩽ ∣∣un − uφ(n)
∣∣ +

∣∣uφ(n) − ℓ
∣∣ ⩽ ε

2 + ε

2
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Ceci donne : |un − ℓ| ⩽ ε

Nous avons démontré que pour tout ε > 0 il existe N0 ∈ N tel que :

∀n ∈ N n ⩾ N0 =⇒ |un − ℓ| ⩽ ε

Ceci signifie que la suite (un) converge vers ℓ.
Ainsi toute suite de Cauchy est convergente.

Finalement les suites de Cauchy sont les suites convergentes.

28 Soit (un)n∈N une suite bornée.
Démontrer que la suite (un) converge si et seulement si elle admet une unique valeur
d’adhérence.
Indication : Justifier que si la suite (un) ne converge pas vers ℓ alors il existe un
réel ε > 0 et une suite extraite de (un) entièrement comprise hors de l’intervalle
[ℓ − ε, ℓ + ε].

Si (un) converge alors sa limite ℓ est valeur d’adhérence.
Si a est une autre valeur d’adhérence alors il existe (uφ(n)) convergeant vers a. Or toutes
les suites extraites de (un) convergent vers ℓ, donc ℓ = a.

Réciproquement supposons que la suite (un) admet une et une seule valeur d’adhérence,
et notons ℓ celle-ci.
On raisonne par l’absurde en supposant que (un) ne converge par vers ℓ. Ceci signifie :

∃ε > 0 ∀N ∈ N ∃n ∈ N (n ⩾ N et |un − ℓ| > ε)

On fixe un tel ε. Alors il existe une infinité de termes un hors de l’intervalle [ℓ − ε, ℓ + ε].
Il existe donc une suite extraite (uφ(n))n∈N dont tous les termes sont hors de cet intervalle.
Cette suite extraite (uφ(n)) est bornée car la suite (un) est bornée. D’après le théorème de
Bolzano-Weierstrass elle admet une suite extraite convergente, que l’on note uφ◦ψ(n).
Soit a la limite de cette dernière suite. Comme :

∀n ∈ N
∣∣uφ(n) − ℓ

∣∣ > ε

alors par théorème de comparaison |a − ℓ| ⩾ ε > 0, ce qui montre que a ̸= ℓ.
Or a est limite d’une suite extraite de (un), donc a est valeur d’adhérence de (un), alors
que (un) n’a que ℓ pour valeur d’adhérence.
Cette contradiction montre que la suite (un) converge vers ℓ.
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29 Soit (un)n∈N une suite réelle positive.

a. On suppose qu’il existe deux suites (an)n∈N et (bn)n∈N positives convergeant vers 0
telles que :

∀(n, p) ∈ N2 un+p ⩽ apun + bn

Démontrer que la suite (un)n∈N converge vers 0.
b. Soit (εn)n∈N une suite positive convergeant vers 0, et pour tout n ∈ N : vn = Sup

j⩾n
εj.

Démontrer que la suite (vn)n∈N est bien définie et qu’elle converge vers 0.
c. On suppose qu’il existe un réel K strictement supérieur à 1 et une suite (εn)n∈N

positive convergeant vers 0 tels que :

∀n ∈ N un+1 ⩽
un + εn

K

Démontrer que la suite (un)n∈N converge vers 0.

a. Soit ε > 0. Il existe N ∈ N tel que pour tout n ⩾ N : bn ⩽ ε
2 .

Puis il existe P ∈ N tel que pour tout p ⩾ P : apuN ⩽ ε
2 .

On en déduit que pour tout n ⩾ N + P : un ⩽ ε.
b. La suite (vn) est bien définie car la suite (εn) est bornée, puisqu’elle converge vers 0.

La suite (vn) converge vers 0 par conséquence de la définition de la convergence.
c. On démontre par récurrence sur n, en fixant p :

∀(n, p) ∈ N∗ un+p ⩽
un
Kp

+ 1
Kp

p−1∑
i=0

Kiεn+i

Ceci donne :
∀(n, p) ∈ N∗ un+p ⩽

un
Kp

+ 1
K − 1 Sup

j⩾n
εj

On applique le résultat de la question (a) avec an = 1
Kn et bn = 1

K−1 Sup
j⩾n

εj.

D’après la question (b) la suite
(
Supj⩾n εj

)
n∈N converge vers 0.
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