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MPSI — Mathématiques

Corrigé partiel du T. D. A9
Suites

Soit (u,) la suite définie par ug =0 et :
w2
Vn € N Upt1 = 1+ Zn
a. Démontrer que (u,) est majorée et croissante.
b. Démontrer que (u,) et convergente et donner sa limite.

c. On suppose maintenant que uy = 3. Démontrer que la suite (u,) admet une limite
et donner cette limite.

On note f:z— 1+ %2 l'itératrice de la suite (u,). Sa courbe est une parabole que 1'on
peut tracer.

On démontre que f admet 2 pour unique point fixe.

L’intervalle Ry est stable par f est ug € Ry donc la suite (u,) est incluse dans R
Comme f est croissante sur Ry alors la suite (u,) est monotone.

On montre que u; = ug (quel que soit la valeur de ug) donc la suite (u,,) est croissante.
On démontre qu’elle est majorée par 2 donc elle converge vers 2.

Si ug = 3 alors on démontre par ’absurde qu’elle n’est pas convergente, et par théoréme
de la limite monotone elle tend vers +o0.

Soit (uy,) la suite définie par uy > 0 et :
1
1+u,
a. Démontrer que la suite (u,,) est bien définie et décrire ses variations.

\V/’n/ € N Upt+1 =

b. Démontrer que les suites extraites (us,) et (ug,+1) convergent et donner leurs limites.
c. Démontrer que la suite (u,) converge.

a. Soit f : x> g7 Vitératrice de la suite (uy).
Comme R est stable par f et ugp € Ry alors la suite (u,) est bien définie et incluse
dans R, .
Comme f est décroissante sur R alors la suite (u,,) n’est ni croissante, ni décroissante,
méme a partir d’'un certain rang.

b. Les suites extraites (ug,) et (ug,41) vérifient la relation v, = g(v,) avec g = f o f,
; _ z+1
i.e., g(zr) = T

La fonction g est croissante sur R, donc les suites extraites sont monotones.
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C.

On démontre que 'une est croissante majorée par o = @ et l'autre décroissante
minorée par «, on en déduit qu’elles convergent et leur limite est «.

Par théoréme, comme (usg,) et (ug,41) convergent vers la méme limite alors la suite
(u,) converge vers cette limite, ¢’est-a-dire vers .

Déterminer les termes généraux des suites définies par :

a. up=4 et YneN Upr1 = 2Uy — 8
b.uy=2 et VnelN Upt1 = 3 — Uy
c. upg=0 et VYneN Upt1 = %un — 2.

.y = 8 — 2"+ b.u, = 33+ (=1)") c.u, =427 — 1).

®

=

T SR

Déterminer les termes généraux des suites définies par :

a. upg =0, u; =1et ‘v’nG]l\Iun+2 :4un+1 — 3u,

b.uy=0,us =1et Vn € N upio2 = 2upy1 — Uy

c. up=2,u; =—1etVn € N upt2 = 2up41 + 24u,

d.up=1,u = —4 et Vn € N upy9 = —6upi1 — Juy,

e. up=2,u =0et Vn € N w9 = 2upt1 — 2u,
Donner une forme réelle de cette suite.

fug=1u=1etVn €N tpro = vV3Upi1 — Un

Démontrer que cette suite est périodique.

un = 13" = 1)
= (767 + 13(—4)")
= (14+2)(=3)" = —(n + 3)(=3)""

U, = e's + fe6 aveca =1 —1(2—-V3) et B=L14+1(2-V3)
ou  u, =cos™ 4 (2—+/3)sin

Cette suite est 12-périodique.
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Pour tout n € IN on pose :
= (1245 + (=0

a. Trouver une relation de récurrence double vérifiée par la suite (uy,)nen-

b. Démontrer que tous les u,, sont entiers.

On calcule que ug =2 et u; = 1.
On démontre que : Vn € N u,0 = Upy1 + 3u,

En effet, si une suite vérifie une telle relation de double-récurrence alors il existe deux
réels a et 3 tels que :

Vn € N un:oz<1+2\/ﬁ> —|—B<1_2\/1—3) )

Si ug = 2 et u; = 1 alors on obtient bien o = § = 1, donc il s’agit de la suite (uy,).

Par récurrence double on démontre que la suite (u,,) est entiére.

@ Soit (un,)nen une suite telle que ug > 0, uy = 1, et pour tout n € IN :

Un+2 = \/ UpUnt1

Démontrer que cette suite converge et exprimer sa limite en fonction de ug et ;.

Par récurrence double la suite (u,) est strictement positive.
On pose v, = Inu,.

Alors v,,19 = %(Un + Upy1). On démontre qu'il existe (a, ) € R? tel que :

1 n
VnelN vn—a+ﬁ(—2) )
On obtient o = %lnuo et (= glnu[).
1pz(-y)"
On en déduit : Vn e N Uy =ug °° 7

Cette suite converge vers Juy.
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Soit A une matrice carrée inversible de taille (n,n) satisfaisant A + A~ = TI,,.
Calculer AP + A™P pour tout p € IN.

En développant (A + A™1)? on montre que A% + A™2 = —1I,,.
De méme on montre que A3 + A=3 = —21,.

On démontre par récurrence qu’il existe une suite (a,)yen telle que A? + A™? = q,1,, pour
tout p € IN.
On obtient ag = 2, a; = 1, puis ap41 = ap — ap_1.

. . , . j BT ;P
On reconnait une suite double-récurrence. On obtient a, = ae's +fe™*s aveca = =1,
puis a, = 2 cos ;.

Finalement : Vpe N AP + A7P = 2cos %In

Un exemple de telle matrice : A = <1 _(1) )

Soit (u,) une suite complexe définie par ug € C et :
22Uy, + Uy

Vn € N Up+1 = 3

Etudier la limite de cette suite.

On note x,, et y, les parties réelles et imaginaires respectivement de u,,.
On démontre que pour tout n € N :  x, = 9 et y, = &

Donc (uy,,) converge vers o = Re(uy).

[9] Soit (uy,) et (v,) deux suites réelles vérifiant pour tout entier n :

Upp1 = %(un —2v,) +2
Upy1 = %(2un +v,) — 2

Etudier la convergence des suites (u,) et (v,). On pourra utiliser les complezes.

On définit :  Vne N z, = u, + iv,.

On obtient alors :  Vn € N 2,4y = 22z, +2 — 2i

Cette suite est arithmético-géométrique.

On calcule son terme général :  Vn € N 2z, =3+ (20 — 3) (%)n

Comme |+£2| < 1 alors la suite (z,) converge vers 3.

Donc les suites (u,) et (v,) convergent respectivement vers 3 et 0.
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Soit ¢ un nombre complexe de module 1.

Démontrer que la suite (¢"),en converge si et seulement si ¢ = 1.

On pourra considérer la suite (¢"),en.

Si ¢ = 1 alors la suite (¢"),en est constante égale a 1 donc elle converge vers 1.
Réciproquement, supposons que la suite (¢"),en converge et notons ¢ sa limite.

La suite (|¢"|) est constante égale a 1, donc elle converge vers 1, ce qui montre que /| = 1,
et donc ¢ est non-nul.

Par décalage la suite (¢"!),en converge également vers /.

L _
i =

Par quotient la suite (q"H) converge vers 1. Or cette suite est égale a ¢, donc ¢ = 1.

qTL

Pour tout n € IN on pose u,, = Zﬁ puis :
k=1

Up = Uy — 24/ Wy, = Uy, — 20/ + 1
a. Démontrer que les suites (v,) et (w,) sont adjacentes.
b. En déduire que le suite (u,) tend vers +oo.

c. Démontrer que u, ~ 2/n.

a. On démontre que (v,) est décroissante, (w,) est croissante, et (v, — w,) converge vers
0. Pour ceci on utilise des quantités conjuguées, et on considére w, — w,_1 plutdét que
Wn+1 — Wy

b. Par théoreme les suites (v,,) et (w,) convergent vers la méme limite.

Comme u,, = v, + 2y/n alors (u,) tend vers +oc.

c. Pour tout n € IN* : 21\‘75 = 2% + 1.
Un

Comme (v,) est convergente et (2y/n) tend vers 400 alors 3 2= converge vers 0.

Un

Alnsi 5% converge vers 1 et u, ~ 2y/n.

Soit (u,) et (v,) deux suites définies par ug = 0, vy = 12 et pour tout n € IN :
{ Up+1 = %(un +Un)

Unt+1 = %(un + 2Un)

a. Démontrer que les suites (u,) et (v,) sont adjacentes.
b. Calculer leur limite.

On démontre :

e VnelN Upy1 — Upyp1 = %(vn — Up)
La suite (v, — u,) est géométrique, donc : Vn e N v, —u, = %.
Cette suite converge vers 0.

e VnelN un+1—un:%(vn—un):6%>0
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Donc la suite (u,) est croissante.

—5(vp —up) = =55 <0

Donc la suite (v,,) est décroissante.

e VnelN Upa1 — Up =

Les suites (u,) et (v,) sont adjacentes, et donc par théoréme elles convergent vers la méme
limite.

Pour calculer cette limite on peut remarquer que u,, est la somme des termes d’une suite
géométrique. En effet par télescopage :

nd nlg 36 1\"
e B -ES 2o (1))

k=0 k=0

Les suites (u,) et (v,) convergent vers .

Soit A et B deux parties non-vides de R telles que :

Va € A Vbe B a<b.

a. Démontrer que A admet une borne supérieure et B admet une borne inférieure.
b. Démontrer que Sup A < Inf B.

a. Comme la partie B est non vide alors elle contient au moins un élément by.
Ainsi: Vae A a < by.
Ceci montre que la partie A est majorée par by.

La partie A est majorée et non-vide, donc par la propriété de la borne supérieure elle
admet un plus petit majorant, i.e., une borne supérieure.

De méme la partie A admet un élément ag, lequel est un minorant de B. La partie B
est non-vide minorée donc elle admet une borne inférieure.

b. Soit b un élément de B. Alors b est un majorant de A, car: Va € A a <b.
Or Sup A est le plus petit majorant de A, donc Sup A < b.
On a démontré que : VvVbe B SupA <b.

Ainsi Sup A est un minorant de B. Or la borne inférieure de B est par définition le
plus grand minorant de B, donc Sup A < Inf B.
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Soit A et B deux parties majorées non vides de R.

a. Démontrer que si A C B alors :
Sup A < Sup B
b. Démontrer que A U B est majorée et que :
Sup(A U B) = Max {Sup A, Sup B}
c. Démontrer que A N B est majorée, et que si elle est non-vide alors :
Sup(A N B) < Min {Sup A4, Sup B}
Montrer que ’égalité n’a pas lieu en général.
d.Onnote A+ B={x+y|x €A, ye B}
Démontrer que A 4+ B est majorée et que :
Sup (A + B) = Sup A+ Sup B

Comme le parties A et B sont non-vides majorées alors elles admettent une borne supé-
rieure chacune, 7.e., Sup A et Sup B sont définies.

a. Supposons que A C B.
La borne supérieure de B est un majorant de B, donc: Vbe B b < SupB.
Comme AC Balors: VYa€A a€B donc a< SupB.
Ceci montre que Sup B est un majorant de A. Or Sup A est le plus petit majorant de
A, donc Sup A < Sup B.

b. Soit M = Max {Sup A, Sup B}.
Comme Sup A est un majorant de A et Sup A < M alors M est un majorant de A.
De méme M est un majorant de B.

Ainsi M est un majorant de A et de B. Si x est un élément de AU B alors z € A ou
x € B, doncx <SupA < M oux<SupB < M, et finalement x < M.

Ceci montre que M est un majorant de AU B.

La partie A U B est non-vide car A et B sont non-vides, elle est majorée, donc elle
admet une borne supérieure. Comme M en est un majorant alors Sup(AU B) < M.

En effet la borne supérieure de A U B est son plus petit majorant.
Comme A C AU B et B C AU B alors d’apres la question (a) :

Sup A < Sup(AU B) et Sup B < Sup(A U B).

On en déduit Max {Sup A, Sup B} < Sup(AU B), i.e., M < Sup(AU B).
Par antisymétrie : Sup(A U B) = Max {Sup A, Sup B}.
c. Comme AN B C A et A est majorée alors d’apres la question (a) AN B est majorée.
Si de plus elle est non-vide alors elle admet une borne supérieure.
D’apres la question (a), comme AN B C Aet ANB C B alors :

Sup(ANB) < SupA et Sup(A N B) < Sup B.

Ceci montre que Sup(A N B) < Min {Sup A, Sup B}.
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Montrons par un exemple que cette inégalité peut étre stricte.
Soit A =10,2] et B=[0,1] U [3,4]. Alors AN B = [0, 1].
De plus Sup A =2, Sup B =4 et Sup(AN B) =1 < Min {Sup A, Sup B} = 2.
L’inégalité est stricte.
d. Notons a = Sup A et b = Sup B.

Alors a est un majorant de A et b est un majorant de B, donc :
V(z,y) € Ax B r+y<a+hb.

Ceci montre que a + b est un majorant de A + B.

La partie A + B est non-vide car A et B sont non-vides, elle est majorée donc elle
admet une borne supérieure.

Comme a + b est un majorant de A+ B alors Sup(A + B) < a+b.
Deux méthodes pour démontrer I'inégalité inverse :

Méthode 1. Soit € > 0. alors a — § < a donc a — § n’est pas un majorant de A, puisque

a est le plus petit majorant de A. Donc il existe x € A tel que a — ¢ < x. De méme il
existe y € B tel que b— 5 < y.

On a donc par somme : a +b—¢ <z +y.
Or z+y € A+ B, et Sup(A+ B) est un majorant de A+ B, donc x +y < Sup(A+ B).

On a démontré :
Ve >0 a+b—e < Sup(A+ B).

Ceci donne a + b < Sup(A + B), puis par antisymétrie :
Sup(A+ B) =a+ b= Sup A+ Sup B.

Méthode 2. Par propriété du cours, si a = Sup A alors il existe une suite d’éléments de
A convergeant vers a.

Soit (a,) une telle suite, et de méme soit (b,) une suite d’éléments de B convergeant
vers b.

Pour tout n € N, a,, + b,, appartient a A + B, donc :
Vn € N a, + b, < Sup(A + B)
Comme (a,) converge vers a et (b,) converge vers b alors par théoréme de comparaison :
a+b< Sup(A+ B).
Enfin par antisymétrie :

Sup(A+ B) =a+ b= Sup A+ Sup B.
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Soit f :[0,1] — [0, 1] croissante, et :
A={ze€0,1]] f(z) = z}.

a. Démontrer que A possede une borne supérieure.

b. Soit s la borne supérieure de A. Démontrer que s est un point fixe de f, i.e., que

f(s) =s.

a. A est majorée par 1, non-vide car elle contient 0, donc elle posséde une borne supérieure.
b. Si z € A alors x < s, donc par croissance f(z) < f(s).

Or z < f(z) car z € A, donc = < f(s).

Ceci montre que f(s) est un majorant de A, et donc s < f(s).

Si on suppose que s < f(s), alors il existe ¢t € [0, 1] tel que s <t < f(s).

Mais alors par croissance f(s) < f(t), donc t < f(t), puis t € A.

Ceci contredit le fait que s est un majorant de A, et donc s = f(s).

Soit A une partie de R non majorée.

Démontrer qu'il existe une suite (u,),ewy d’éléments de A tendant vers +o0.

Comme la partie A n’est pas majorée alors pour tout n € IN il existe u, € A tel que
Uy = N.

Par théoréeme de comparaison la suite (u,) tend vers +o0.
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Soit (u,) une suite et ¢ un réel. Que signifient, ou qu’impliquent les propositions
suivantes ?

a.Ve>0 VNeN VneN n>2N = |u,—{| <¢
b.3e>0 VNeN VneN n>2N = |u,— ¢ <¢
c. >0 INeN VnelN n>N = |u,— ¥ <e
d.Ve>0 INeN VnelN n>N = |u,—{| <e
e. AINeN Ve>0 YneN n>2N = |u,—¥{| <¢
f. VNeN Ve>0 YVneN n>2N = |u,— ¢ <¢
g ANeN de>0 VneN n>N = |u,— /¢ <¢
hhVNeN Fe>0 YVneN n>2N = |u,— ¥ <e¢

. (uy) est constante égale a /.

u,) est bornée.

u,) est bornée.

est stationnaire en /.
u,) est constante égale a /.
u,) est bornée.

=0 o o0 T W

)

(un)

(un)

(uy,) converge vers /.
- (un)

(un)

(un)

(uy,) est bornée.

Unp

Soit (u,) une suite réelle. Traduire les assertions suivantes a I’aide de quantifica-

teurs :

a. La suite (u,,) est bornée.

b. La suite (u,,) est stationnaire.
C

(tn)
(tun)
. La suite (u,) n’est pas croissante.
d. La suite (u,) n’est croissante a partir d’aucun rang.
(tn)

e. La suite (u,) ne converge pas vers 0.

a.IMeR VneN |u,| <M

b.ANeN VnelN n>N= u, =up1

c. melN wuy, > Uy

dVNeN dnelN (n>=N et u, > Upi1)
e. >0 VNeN dnelN n=>Net|u,| >c¢
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Soit (u,) une suite de réels strictement positifs. On suppose que la suite (uz—“)

converge vers un réel a élément de [0, 1]. Le but de cet exercice est de démontrer que
la suite (u,) converge vers 0.

1+a
=%
b. Pour tout entier naturel n, donner une majoration de u,, en fonction de b, n et wu,,.

a. On pose b = Justifier qu’il existe p € N tel que :  Vn>p wu,1 < bu,

c. Conclure.
Seconde démonstration :

d. Démontrer que la suite (u,) est décroissante & partir d’un certain rang, puis qu’elle
est convergente, et enfin que sa limite ne peut étre non-nulle.

Applications :

e. Démontrer que la suite (n!) est négligeable devant la suite (n").
f. Démontrer que pour tout réel o > 1 la suite (n") est négligeable devant la suite

((nh)®).
a. Soit e =b—a. Alors € = 1;2“ et comme a < 1 alors € > 0.

La suite (%) converge vers a donc par définition de la convergence il existe un entier
n
p tel que :

U
Vn € N nzp — "H—a'és
Up,
U
Ceci donne ZH —a<b—a pus U,y <bu, caru, estpositif, par supposition
n

de 'énoncé.

On a donc justifié qu’il existe un entier p tel que :
Vn e N nzp = Up < bu,
b. Pour tout n € IN on définit la propriété :
9., Untp < D"y

On démontre par récurrence que cette propriété est vraie pour tout n € IN.
Initialisation. Pour n = 0 la propriété est : u, < b°u,. Elle est valide car v° = 1.
Hérédité. Supposons que pour un certain n € IN la propriété est valide.

D’apres la question précédente, comme n + p > p alors

Upiprl S bun+p

L’hypothese de récurrence est :
Untp < b Uy
On obtient par transitivité :
Untpr1 <V,
Ceci montre que la propriété est vraie au rang n + 1, et donc justifie I'hérédité.

Conclusion. Par récurrence, pour tout n € IN : w4, < 0"u,
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c. La suite (u,,) est supposée strictement positive, donc la question précédente donne :

Vn € N 0 < Upgp < 0"y

N _a+l _ 141
On remarque que b < 1. En effet par hypothese a <1 donc b= 5= < == = 1.

Ceci implique que la suite (b™u,)nen converge vers 0 lorsque n tend vers +oc.
Par théoreme d’encadrement la suite (u,4p)nen converge vers 0.
Par décalage la suite (u,),en converge vers 0.
d. La suite <%>  converge vers a. Comme a < 1 alors a partir d'un certain rang
n ne
Un+1
s L
En effet, si on pose € =1 — a alors € > 0 donc a partir d’un certain rang :
Un+1
Unp,

a—e< <at+e=1

Comme (u,) est strictement positive, alors ceci montre qu’a partir d’un certain rang :
Un+1 g Unp,

Or la suite (u,) est minorée par 0. Elle est décroissante & partir d'un certain rang et
minorée par 0 donc par théoreme elle converge.

Soit ¢ sa limite.

Comme la suite (u,) est positive alors par théoreme de comparaison ¢ > 0. En effet :
(VneN w,>0) = limu,<0

On raisonne par I'absurde en supposant que ¢ > 0.

Un+1
Un

Dans ce cas par décalage (u,1) converge vers ¢, puis par quotient ( ) converge vers

% = 1. Or nous savons que (%) converge vers a et que a < 1. Cette contradiction

montre que ¢ = 0.
Nous avons donc de nouveau démontré que la suite (u,),en converge vers 0.
! . s . . . o .
e. Posons u, = 5. Ceci est défini pour tout n € IN*, la suite (u,) est strictement positive

et :
Upr1  (n+1)! n" n" ( 1 )”
Vn € IN* = = =(1=
Up n! (n+ 1)) (n4 1) n+1

Ceci donne u

n+1 _ enln(lf%“)

U,

1 p . . 1 1

Comme —57 — 0 alors par équivalence usuelle :  In (1 — T+1> ~ ==
Par produit n1n (1 — ﬁ) ~ —15 ~ —1. Ceci montre que (nln (1 - #1)) converge

vers —1 puis la fonction exponentielle étant continue, que (“ZJ) converge vers e !
n

Comme la suite (u,,) est strictement positive et e~! € [0, 1[, alors on peut appliquer le
résultat démontré dans les question précédentes. Il implique que la suite (u,) converge
vers 0.

Ainsi 7% converge vers 0 donc par définition la suite (n!) est négligeable devant la suite
(n™): nl=o(n")

page 12/20



MPSI — Mathématiques Corrigé partiel du TD A9 : Suites

f.

nn

Soit o un réel tel que a > 1. On pose maintenant, pour tout n € N : v, = e

On calcule, toujours pour tout n € IN* :

Un, n + 1)+ nl)® n—+1)" « 1\" 1
Un nt o ((n+1)he nn (n+1) n) (n+ 1)1
On écrit alors : ¥l — enln(H%) 1

(n+1)a-1
1

Comme % — 0 alors par équivalence usuelle : In (1 + %) ~

Par produit nln (1 + %) ~ 1. La suite (n In (1 + %)) converge donc vers 1, puis 1'ex-

1
ponentielle étant continue : (e"ln(Hn)) converge vers el = e.

La suite (W) converge vers 0 car a — 1 > 0.

Par produit la suite (%) converge vers 0.

Ainsi la suite (%) converge vers un élément de [0, 1], la suite (v,) est strictement
positive, donc d’apres le résultat démontré dans les premieres questions de l’exercice
la suite (v,,) converge vers 0.

Ceci montre que la suite (n™) est négligeable devant la suite ((n!)*) : n" = o((n!)%)

Soit (uy,)nen une suite. On suppose que u, + U,11 ~ %

1

a. Démontrer que si la suite (u,) est décroissante alors u, ~ 5-.

b. Justifier que le résultat est faux si la suite (u,) n’est pas supposée décroissante.

Considérer par exemple u,, = % F %

Comme la suite (u,)nen est décroissante alors pour tout n € IN* : w, 1 > u, > upqr,
ce qui donne :

n(Up_1 + uy) = 20Uy = 1ty + Upi1).
Or par énoncé u, + tnt1 ~ = donc (n(u, + tn41)) converge vers 1.

De plus par décalage w,—q + u, ~ —, puis :

nlx(n—l)(un_1+un)~ o1 > 1.

n(tny ) = n— n—1 n—+oo

Par théoréeme d’encadrement la suite (2nw,,) converge vers 1, et u,, ~ %
Soit u,, = i + % pour tout n € IN*.
(=n"

Comme 5- = 0(%) alors u, ~ 2.

Cependant on calcule :

Vn € IN* + 2ntl + (=1)" !
n Up + Upy1 = — —
T 2n(n+ 1) Vi + ) (Vo 1+ n)
2n4l 1 ot 1 1

On montre que

2n(n+1) \/n(n+1)(¢r+1+\/ﬁ) ™~ onyn
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1 _ (1 1
Comme = o(n) alors u, + up1 ~ -

1 (=)™

Mais la suite (u,) n’est pas équivalente a la suite (%), car p, ~ 7.

Soit (U, )nen une suite définie par uy > 0 et pour tout n € IN :

2

U,

ol = ¢ nu,,
a. Démontrer que la suite (u,) converge.
b. Déterminer sa limite.
c¢. Démontrer que u,, = O(ﬁ)
On démontre par quotient que la suite (u,,) est décroissante a partir du rang 1.
Par récurrence elle est positive, donc minorée par 0.
Par théoreme, la suite (u,) est décroissante minorée par convergente.

Comme la suite (u,) est minorée par 0 alors par théoreme de comparaison sa limite est
positive :

(YneN wu, >0) — limwu, >0
Notons ¢ = lim u,,.
T Uy X 42
On écrit :  Vn € N* Upp = 41—
n + U,

Supposons que £ > 0. Alors “* — 0 et (% —1—un) — ¢ donc par produit et quotient
Un+1 — 0. Or par décalage (u,11) converge aussi vers £. Cette contradiction montre que
¢=0.

Ainsi la suite (u,) converge vers 0.

#),) on pose v, = (n — 1)lu,.

Pour démontrer que u,, = O( T

Un+l . _ NUn
Un 1+nun

(car elle est positive et majorée par vq). Ainsi u, = O(ﬁ)

On montre que < 1, donc la suite (v,) est décroissante. Elle est donc bornée

page 14/20



MPSI — Mathématiques Corrigé partiel du TD A9 : Suites

Pour tout n € IN* on pose f,(z) = 2" —nz + 1.

a. Démontrer que pour tout entier n > 2 il existe un unique réel u, € [0,1] tel que
fn(u,) =0.

b. Démontrer que pour tout n > 2 : < u, <

1
n

N 3w

Que peut-on en déduire pour la suite (u,)n>

[\

c. Donner un équivalent simple de (u,,).

a. La fonction f, est dérivable, de dérivée : f!(z) = n(z" 1 —1).
Elle est donc strictement décroissante sur 'intervalle [0, 1].
Elle est continue car polynomiale.
De plus f,(0) =1, f.(1) = 2 —n donc elle réalise une bijection de [0, 1] dans [2 — n, 1].

Soit n > 2. Alors 2 —n < 0, donc 0 € [2 —n, 1], et donc par définition d’une bijection
il existe un et un seul z,, € [0, 1] tel que f,(u,) = 0.

b. Comme f,(u,) = 0 alors (u,)" = nu, — 1. Or u, € [0, 1] donc (u,)" € [0, 1], et donc
nu, — 1 € [0,1]. Ceci donne 0 < nu,, — 1 < 1, d’ou le résultat.

On peut aussi remarquer que f,(2) = -1 > 0et f,(2) = (2)" =1 <0, donc f,(2) >
fol(uy) > fn(%) et comme f, est strictement décroissante alors % <up < %
On en déduit par encadrement que la suite (u,) converge vers 0.

¢. On peut également écrire :

* 1 n 2 " nln 2

Par encadrement la suite (u,)" converge vers 0 donc (nu, — 1) aussi, et ainsi u,, ~ 1

Pour tout n € IN* on pose f,(z) = 2"+ — 1.

a. Démontrer que pour tout n € IN* il existe un unique u,, € R* tel que f,(u,) = 0.
b. Démontrer que la suite (u,,),en+ converge.
c. Déterminer sa limite.

d. Démontrer que = = o(1 — u,).

a. La fonction f, est continue, strictement croissante sur R* car sa dérivée est f)(z) =
nz" 1 + 1.

Elle réalise donc une bijection de R dans |—1, +o0].
Il existe donc un et un seul réel u, € R tel que f,(u,) = 0.
b. Comme f,(u,) alors u" = 1 — uy, puis fri1(u,) = —(1 — u,)>
Comme f, 1 est strictement croissante et f,,11(u,) < frni1(Uny1) alors u, < 1.
La suite (u,) est donc croissante.
Comme f,(n) =1 alors u, est majorée par 1.

Par théoréme, la suite (u,) est croissante majorée donc elle converge.
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c. Soit £ = limu,,. Alors ¢ € [%, 1} car u; = %
Si ¢ < 1 alors u! tend vers 0, donc u,, tend vers 1. Ainsi u,, tend vers 1.

d. Comme f,(1) =1 alors 0 < u,, <1, donc u} =1 —u, > 0.
L’égalité u!' = 1 —wu,, donne nlnu, = In(1—wu,). Comme u, — 1 alors Inu,, ~ u, —1,
donc n(u, — 1) ~ In(1 — u,). Ceci donne n(u, — 1) — —o0, puis = = o(1 — u,).

Soit (uy,)nen une suite. Converge-t-elle si :

a. Les suites (uay) et (ug,41) convergent ?

b. Les suites (ug,), (u2,11) et (us,) convergent ?

c. Les suites (ugy), (us,) et (us,) convergent ?

d. La suite (u,) est croissante et la suite (u,) converge ?

a. La réponse est négative. Exemple : u,, = (—1)".
b. La réponse est positive.

La suite (ug,) est extraite des suites (ua,) et (us,) donc elle converge vers leur limite,
et ainsi celles-ci sont égales.

La suite (ug,13) est extraite des suites (ug,.1) et (us,) donc elle converge vers leur
limite, et ainsi celles-ci sont égales.

Les suites (ug,) et (ug,4+1) convergent vers la méme limite donc la suite (u,) converge.
c. La réponse est négative.

Exemple : la suite u,, = 1 si n est une puissance de 7, 0 sinon.
d. La réponse est positive.

L’encadrement g, < Ugnt1 < Ug(ny1) montre que la suite (ugni1) converge vers la
méme limite que la suite (ugy,).

Pour tout n € IN on pose u,, = cos (1m/n).

La suite (uy)nen converge-t-elle ?

La suite extraite (u,2) vérifie : Vn € N w2 = cos(mn) = (—1)"
Cette suite extraite diverge. Or toute suite extraite d’une suite convergente converge, donc
la suite (u,) diverge.
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Soit (U, )nen une suite non majorée.

Démontrer qu’il existe une suite extraite de (u,) tendant vers +o0.

On construit par récurrence une suite (uw(n))nem vérifiant pour tout n € IN : uy,) >
Initialisation. Comme la suite u,, n’est pas bornée alors il existe m € N tel que u,, >
On pose ¢(0) = m, ainsi on a bien gy = 0.

Hérédité. Soit n € IN. On suppose qu'on a déterminé un entier p(n) tel que ugy@m) = n.

La suite (uk)g>p(n) n'est pas majorée. En effet la suite (ur)o<k<p(n) est finie donc majorée,
donc si la suite (ug)p>ypm) était majorée alors la suite (u,)nen serait majorée, ce qui est
supposé faux.

Il existe donc k& > ¢(n) tel que ux, > n+ 1. On pose p(n + 1) = k. On a alors bien
Upm+1) =N+ 1, et p(n+1) > p(n).
Conclusion. On a construit une fonction ¢ : N — IN strictement croissante telle que :

VnelN Up(n) = N

La suite (u,(,)) ainsi construite est extraite de la suite (u,) et tend vers +o0o par théoreme
de comparaison.

Une suite (u,)new est une suite de Cauchy si :

Ve > 0 dN €N Y(p,q) € N (=N e ¢g=2N) = |u,—uy,<c¢

a. Démontrer que si une suite est convergente alors elle est de Cauchy.
b. Soit (uy)new une suite de Cauchy.

(i) Démontrer que la suite (u,)nen est bornée.

(7i) En déduire qu’elle est convergente.

a. Soit (un)new une suite convergente, et soit ¢ sa limite.
Démontrons que la suite (u,),en est une suite de Cauchy.

Soit € > 0. Alors § > 0. Comme la suite (tn)new converge vers £ alors :
INeEN VneN (n>N — \un—€]<%>

Soit p et ¢ deux entiers. D’apres ce qui précede, si p > N et ¢ > N alors :

=l <5 et fu—f <

DO ™

D’apres I'inégalité triangulaire :
[(up =€) — (ug — O)] < |up — €] + |ug — £

On en déduit :
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On a démontré que :

Ve >0 dN e N V(p,q) € N (p=N et ¢=>N) = |u,—u,l<c¢

La suite (u,)nen est bien une suite de Cauchy.

b. (i)

La suite (uy)nen est une suite de Cauchy, donc en particulier pour € = 1, comme
e > 0 alors :

INeN V(p,q)eN (p=2N et ¢=2N) = |u,—uy <1
Si g = N alors ¢ > N donc :

VpeN p=2N = J|u,—uy|<1
—

uy —1<u, <uy+1

Tous les termes w,, de la suite pour n > N sont dans l'intervalle [uy — 1, uy + 1],
donc ils forment un ensemble borné.

Les termes pour 0 < n < N sont en nombre fini donc ils forment un ensemble
borné également.

Finalement la suite (u,)nen est bornée.

La suite (u,) est bornée donc d’apres le théoreme de Bolzano-Weierstrass elle
admet une suite extraite convergente.

Notons (uy,(n)) une telle suite, c’est-a-dire que ¢ : IN — IN est une fonction stricte-
ment croissante.

Soit ¢ la limite de la suite extraite (uy(n)).
Démontrons que la suite (u,) converge vers £.
Soit € > 0.

Alors § > 0. Comme la suite (u,) est une suite de Cauchy alors :

dAN;eN  V(p,q) €N (p=Ny et ¢=Ny) = |u,—1uy <

DO |

Soit n un entier supérieur ou égal a N;. Comme la fonction ¢ : IN — IN est
strictement croissante alors par propriété ¢(n) > n, et donc ¢(n) > Nj.

Comme n > Nj et ¢(n) > N; alors : ‘un — uw(n)| <5
Comme la suite (uy(n)) converge vers £ alors par définition de la convergence il
existe un entier Ny tel que :

5
Soit Ng = Max {Ny, Na}. Pour tout n € IN, si n > Ny alors n > Ny et n > N
donc :
et upm — ] <5
v 2

[t — )| < E
2

Par inégalité triangulaire :

£ g
[ (tn = o) + (i) = O] < [t = i) | + [ty = £] S 5 + 5
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Ceci donne :  |u, — | < ¢

Nous avons démontré que pour tout € > 0 il existe Ny € N tel que :
Vn e N n>=Ny = |u,—/(<e¢

Ceci signifie que la suite (u,,) converge vers £.
Ainsi toute suite de Cauchy est convergente.

Finalement les suites de Cauchy sont les suites convergentes.

Soit (uy,)nen une suite bornée.

Démontrer que la suite (u,) converge si et seulement si elle admet une unique valeur
d’adhérence.

Indication : Justifier que si la suite (u,) ne converge pas vers £ alors il existe un
réel € > 0 et une suite extraite de (u,) entiérement comprise hors de l'intervalle
[0 —¢e, ¢+ €]

Si (uy,) converge alors sa limite ¢ est valeur d’adhérence.

Si a est une autre valeur d’adhérence alors il existe (uy(n)) convergeant vers a. Or toutes
les suites extraites de (u,) convergent vers ¢, donc ¢ = a.

Réciproquement supposons que la suite (u,) admet une et une seule valeur d’adhérence,
et notons ¢ celle-ci.

On raisonne par l'absurde en supposant que (u,) ne converge par vers ¢. Ceci signifie :

de>0 VN e N dnelN (n>=N et |u,—/¥] >e¢)

On fixe un tel e. Alors il existe une infinité de termes u,, hors de l'intervalle [¢ — ¢, ¢ + ¢].
Il existe donc une suite extraite (ty(n))new dont tous les termes sont hors de cet intervalle.

Cette suite extraite (uy(n)) est bornée car la suite (u,) est bornée. D’apres le théoréme de
Bolzano-Weierstrass elle admet une suite extraite convergente, que I'on note oy (n)-

Soit a la limite de cette derniére suite. Comme :
VneN ‘uw(n)—ﬂ > e

alors par théoreme de comparaison |a — £| > ¢ > 0, ce qui montre que a # /.

Or a est limite d'une suite extraite de (u,,), donc a est valeur d’adhérence de (u,,), alors
que (u,) n’a que ¢ pour valeur d’adhérence.

Cette contradiction montre que la suite (u,) converge vers /.
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Soit (uy,)nen une suite réelle positive.
a. On suppose qu'il existe deux suites (a,)nen €t (by)nenw positives convergeant vers 0
telles que :
Y(n,p) € IN? Untp < Aply + by,
Démontrer que la suite (u,),eny converge vers 0.

b. Soit (£,,)nen une suite positive convergeant vers 0, et pour tout n € N : v,, = Supe;.
j=n

Démontrer que la suite (v,)nen est bien définie et qu’elle converge vers 0.

c. On suppose qu’il existe un réel K strictement supérieur & 1 et une suite (&,,)nen
positive convergeant vers 0 tels que :

Vn € N Upt1 K ————

Démontrer que la suite (u,),en converge vers 0.

a. Soit € > 0. Il existe N € N tel que pour tout n > N : b, <
Puis il existe P € IN tel que pour tout p > P:  a,uny < 5.
On en déduit que pour tout n > N+ P : u, <e.

b. La suite (v,) est bien définie car la suite (g,) est bornée, puisqu’elle converge vers 0.
La suite (v,) converge vers 0 par conséquence de la définition de la convergence.

¢. On démontre par récurrence sur n, en fixant p :

* 1 = . (]
‘v’(n,p) eEN un—i—p X Kp ZK Enti
Ceci donne : .
* U’TL
V(n,p) €N Un+p < ﬁ + K — %;175)8]'
On applique le résultat de la question (a) avec a, = % et b, = Kl_l Supe;
jzn

D’apres la question (b) la suite (Supj>n 5j) converge vers (.

nelN
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