
Correction du TP 4 : Distillation fractionnée d'un mélange eau-propanol

Q1. Donner un schéma annoté du montage classique de distillation fractionnée sous pression atmosphérique

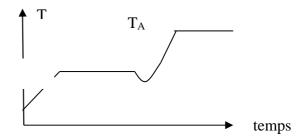
A noter

- -circulation d'eau à contre courant dans le réfrigérant
- utilisation de billes de verre ou de grains de pierre ponce pour réguler l'ébullition (si le chauffe ballon n'est muni d'un dispositif d echauffage)

Q2. Expériences de distillation d'un mélange eau-propan-1-ol.

► Chaque binôme ne réalisera qu'une seule expérience de distillation : distillation du mélange 1 pour un binôme et distillation du mélange 2 pour le binôme voisin partageant la même paillasse.

Résultats expérimentaux :


• Indices de réfraction des produits purs et des mélanges initiaux :

	Mélange 1	Mélange 2	eau	propan-1-ol pur
14 Oct	1,384	1,3485	1,333	1,384
21 Oct	1,383	1,350	1,333	1,384

• Remarques sur le déroulement de la distillation

► Au niveau du distillat ne garder que la fraction correspondant au premier palier de température

Evolution de la température en tete de colonne :

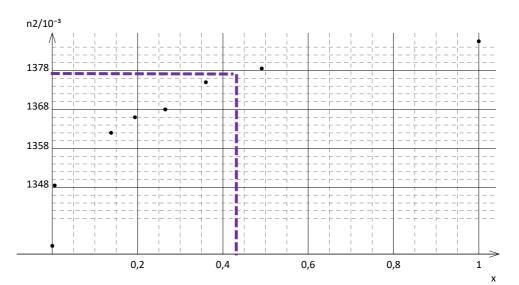
■ Valeurs des grandeurs à l'issue de la distillation

T_{eb}: température atteinte en haut de colonne et restée pratiquement constante lors de la récupération du distillat

Les valeurs indiquées ci-dessous sont celles recueillies sur les compte-rendus

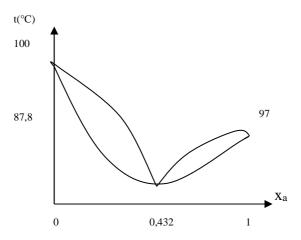
	Mélange 1					M	élange 2			
	Teb	n_{D}	m (g)	n_{D}	m(g)	Teb	n_{D}	M (g)	n_{D}	m(g)
		distillat	distillat	résidu	résidu		distillat	distillat	résidu	résidu
14 Octobre	82°C	1,382	18,99	1,384		85°C	1,378	19,12	1,335	
	84°C	1,3775	34,46	1,385		84°C	1,37	20,37	1,334	
	81°C	1,3795	31,4	1,3845		84°C				
						80°C	1,3775	15,87		
	82,5	1,3795	14,24			81°C	1,3775	11,7		
						83°C	1,376	9,48	1,342	
	78°C	1,379	27,51	1,384		83°C	1,3765	19,97	1,335	
							1,3765	19,97	1,335	
21Octobre	83°C	1,3785	41,36	1,3835		82°C	1,3765	20,26	1,335	
	81°C	1,378		1,384						
	85°C	1,374	53,34	1,3835		83°C	1,382	21,1	1,335	
						83°C	1,376	22	1,334	
	81°C	1,378	32,3	1,384		85°C	1,377	20,73	1,335	
						83-86°C	1,3765	20,26	1,335	
	83°C	1,3815	50,26	1,3800		79°C	1,3765	16,44	1,3365	
	83°C	1,3785	30,6	1,382		84°C	1,3765	17,66	1,336	

Conclusions:


Malgré quelques variations, si on se base sur les valeurs des indices de réfraction, il apparait que

- quel que soit le mélange (1 ou 2), le distillat n'est ni de l'eau pure, ni du propanol pur.
- la nature du distillat est pratiquement identique pour les deux mélanges
- -que le résidu associé au mélange 1 peut etre assimilé à du propanol pur
- -que le résidu associé au mélange 2 peut être assimilé à de l'eau pure.

En ce qui concerne la température lue en haut de colonne et censée s'identifier à la température d'ébullition du distillat , les écarts observés entre les différents groupes peuvent être interprétés par le fait que cette température n'a pas été lue rigoureusement à la même hauteur de colonne .


En ce qui concerne les masses , on peut regretter l'absence des valeurs pour le résidu et il est difficile d'exploiter celles pour le distillat tellement elles diffèrent d'un groupe à l'autre .

Q3. Pour déterminer sa composition , on reporte son indice de réfraction sur la courbe d'étalonnage fournie Exemple : pour $n_D = 1,377$ $x_A \approx 0,43$

Q4. Interprétation des résultats :

Q4a. Allure du diagramme binaire :

Pour suivre la progression de la vapeur , il est nécessaire de connaître la composition du mélange initial afin de pouvoir positionner les points représentatifs caractéristiques du système étudié. Les résultats sont indiqués ci-dessous :

	V _{eau} (mL)	V _{alcool} (mL)	Xalcool	Masse totale
Mélange 1	10(0,555mole)	90(1,206 mole)	0,684	82,48g
Mélange 2	80 (4,44 mole)	20(0,268 mole)	0,057	96,12 g

En matérialisant- la progression de la vapeur le long de la colonne à distiller à l'aide des plateaux théoriques, on peut prévoir la nature du distillat :	Mélange 1 $x_a = 0,684$ 100 $87,8$ $0,432$ 1 1 1 1 1 1 1	Mélange 2 $x_a = 0.057$ 100 87.8 0.432 $1 \times X_a$ Distillat = mélange azéotropique
Evolution de la composition du liquide contenu dans le ballon au cours de la distillation	Le distillat est moins riche en alcool et donc plus riche en eau que le mélange de départ . Au fur et à mesure qu'il est éliminé , le contenu du ballon s'appauvrit en eaujusqu'à ce qu'il ne reste plus que de l'alcool	Le distillat est plus riche en alcool que le mélange de départ . Au fur et à mesure qu'il est éliminé , le contenu du ballon s'appauvrit en alcooljusqu'à ce qu'il ne reste plus que de l'eau
Conclusion : prévision de la nature du résidu de distillation	Résidu = propan-1-ol	Résidu : eau

Les résultats expérimentaux sont tout a fait compatibles avec ces prévisions.

ightharpoonup Pour un mélange liquide de départ ayant la composition azéotropique , la vapeur ne peut apparaitre que pour T_A et elle a la même composition que le mélange liquide de départ . Il n'y a pas d'évolution possible de composition pour cette vapeur ; en d'autres termes lors de la distillation de ce mélange , la vapeur qui arrive en tete de colonne a

exactement la même composition que le mélange liquide de départ et donc le distillat aussi : la distillation est vaine , elle ne permet pas de séparer les deux espèces liquides

.....Rappel: « un mélange azéotropique se comporte comme un corps pur lors de la vaporisation »

Q4b. Retrouver par le calcul la masse théorique de distillat.

Mélange 1	Mélange 2
Le distillat contient la totalité de l'eau	Le distillat contient la totalité de l'alcool
Or $n_{eau} = (1-0.432) n_{distillat}$ d'où $n_{distillat} = 0.977$	Or $n_a = 0,432 n_{distillat}$ d'où $n_{distillat} = 0,620$ mole
$m_{\text{distillat}} = n_{\text{eau}} M_{\text{eau}} + n_{\text{a}} M$	$m_{distillat} = (1-0.432)*0.620M_{eau} + 0.268*M_a$
$m_{distillat} = 0.555*18 + 0.432*0.977*60.1$	$m_{distillat} = 0.568*0.620*18 + 0.268*60.1$
$\mathbf{m}_{\mathbf{distillat}} = 35, 36 \ \mathbf{g}$	$\mathbf{m}_{\mathrm{distillat}} = 22,44 \mathrm{g}$
$m_{ m r\acute{e}sidu} = m_{ m tot} = m_{ m distillat}$	$m_{r \acute{e} s i d u} = m_{tot} = m_{d i s t i l l a t}$
$\mathbf{m}_{\text{résidu}} = 82,48-35,36=47,12g$	$\mathbf{m_{r\acute{e}sidu}} = 96,12 - 22,44 = 73,68g$

Q4c . A partir des résultats expérimentaux , évaluer $\frac{n(propanol, distillat)}{n(propanol, initial)}$ et $\frac{n(propanol pur)}{n(propanol, initial)}$. Conclure sur

l'efficacité de la distillation dans ce cas

Mélange 1	Mélange 2
$\frac{n(propanol, distillat)}{n(propanol, initial)} = \frac{m_{distillat} - 10}{72,48}$	$\frac{n(propanol, distillat)}{n(propanol, initial)} = 100\%$
$\frac{n(propanol\ pur)}{n(propanol\ initial)} = \frac{82,48 - m_{distillat}}{72,48}$	$\frac{n(propanol\ pur)}{n(propanol,initial)} = 0\%$

Conclusion : La distillation ne permet pas de séparer <u>totalement</u> les deux espèces . Elle permet neanmoins d'isoler une seule des deux espèces pures dans le résidu (alcool pour le mélange 1 , eau pour le mélange 2) mais en quantité faible