DL de chimie 2 – Solutions aqueuses A rendre le 4 octobre

1- Par définition le produit de solubilité est la constante d'équilibre de la réaction de solubilisation, c'est-àdire de la réaction ayant pour équation-bilan :

$$MgPO_4NH_{4(s)} \rightarrow Mg^{2+} + PO_4^{3-} + NH_4^+$$

 $D'o\grave{u}: \ K_s = [Mg^{2+}] \ [PO_4{}^{3\text{--}}] \ [NH_4{}^+\]$

Remarque : plus rigoureusement : $K_S = \frac{[Mg^{2+}][PO_4^{3-}][NH_4^+]}{(C^\circ)^3}$

$$K_{S} = \frac{[Mg^{2+}][PO_{4}^{3-}][NH_{4}^{+}]}{(C^{\circ})^{3}}$$

B2 : Diagramme des domaines de prédominances des espèces acido-basiques du phosphore



Diagramme de prédominance des espèces acido-basiques de l'azote

3. Préliminaires : bien analyser l'expression « sous toutes ses formes solubles » :

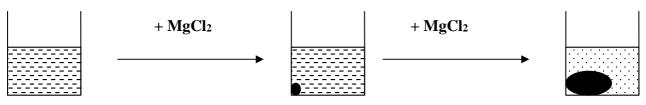
$$C_N = C_N = [NH_4^+] + [NH_3]$$
 $C_P = [H_3PO_4] + [H_2PO_4^-] + [HPO_4^2] + [PO_4^3]$

♦ A pH = 9,5, l'espèce phosphorée HPO₄² est largement majoritaire, on peut donc considérer que $[HPO_4^{2-}] = C_{P}$.

Par ailleurs, on a
$$K_{a3} = \frac{[PO_4^{3-}][H_3O^+]}{[HPO_4^{2-}]}$$
. On en déduit $[PO_4^{3-}] = \frac{K_{a3}C_P}{[H_3O^+]}$

A.N.
$$[PO_4^{3-}] = \frac{10^{-12.4} * 4.10^{-3}}{10^{-9.5}} = 4.10^{-5.9}$$
 ou **[PO₄³⁻] =5,0.10⁻⁶ molL⁻¹**

♦ Pour les espèces azotées, à pH = 9,5, il faut toutes les considérer. (NH₃ est prédominante sans être majoritaire)


On a
$$C_N = [NH_4^+] + [NH_3]$$
 et $K_a = \frac{[NH_3][H_3O^+]}{[NH_4^+]}$ d'où $C_N = [NH_4^+] \left(1 + \frac{Ka}{[H_3O^+]}\right)$
Soit $[NH_4^+] = \frac{C_N}{\left(1 + \frac{Ka}{[H_3O^+]}\right)}$ et $[NH_3] = \frac{C_N}{\left(1 + \frac{[H_3O^+]}{Ka}\right)}$

A.N:
$$[NH_4^+] = \frac{15.10^{-3}}{\left(1 + \frac{10^{-9.2}}{10^{-9.5}}\right)} = \frac{15.10^{-3}}{\left(1 + 10^{0.3}\right)} = 5,0.10^{-3} \text{ et } [NH_3] = \frac{15.10^{-3}}{\left(1 + \frac{10^{-9.5}}{10^{-9.2}}\right)} = \frac{15.10^{-3}}{\left(1 + 10^{-0.3}\right)} = 10,0.10^{-3}$$

$$[NH_{4+}] = 5.0.10^{-3} \text{ molL}^{-1} \text{ et } [NH_3] = 10.0.10^{-3} \text{ molL}^{-1}$$

 $\textbf{3b-} \ Il \ est \ conseill\'e \ de \ d\'ecrire \ d'abord \ les \ ph\'enom\`enes \ se \ produisant \quad \`a \ l'aide \ de \ sch\'emas \ simples :$

 $\begin{aligned} & \textbf{Phosphore} \\ & C_{P}\!\!=4.10^{\text{-}3} \; \text{mol} L^{\text{-}1} \\ & \textbf{Azote} \\ & C_{N}=15.10^{\text{-}3} \; \text{mol} L^{\text{-}1} \\ & \textbf{pH=9,5} \end{aligned}$

Cas i : apparition du précipité $C_P \approx 4.10^{-3} \text{ molL}^{-1}$ $C_N \approx 15.10^{-3} \text{ molL}^{-1}$ pH=9.5

Cas ii : 90% de P précipité $C_P \approx (10/100)*4.10^{-3}$ molL⁻¹

pH=9,5

i) En premier lieu , pour faire apparaître le précipité il faut que la <u>condition de précipitation</u> soit vérifiée , soit $Q_r > K_S$, c'est-à-dire $[Mg^{2+}][PO_4^{3-}][NH_4^+] > K_S$ ou $[Mg^{2+}] > K_S / [PO_4^{3-}][NH_4^+]$

En tout début de précipitation , on peut considérer que $[NH_4^+] \approx [NH_4^+]_{effluent} = 5,0.10^{-3} \text{ molL}^{-1}$ et $[PO_4^{3^-}] \approx [PO_4^{3^-}]_{effluent} = 5,0.10^{-6} \text{ molL}^{-1}$ (en d'autres termes , lors de l'*apparition* du précipité , on considère comme négligeable la quantité de NH_4^+ et de $PO_4^{3^-}$ qui ont participé à sa formation) . On en déduit $[Mg^{2^+}] > 10^{-11} / (5.10^{-6} * 5.10^{-3}) = \textbf{4,0.10}^{-4} \text{ molL}^{-1}$ ou

 $[Mg^{2+}] > 4.0.10^{-1} \text{ molm}^{-3}$

Ainsi pour 5 m³ d'effluent , il faudra une quantité d'ions Mg^{2+} vérifiant : $n (Mg^{2+}) = 5*4,0.10^{-1}$ mole = 2,0 mole

D'autre part , $MgCl_2$ état un électrolyte fort $n (Mg^{2+}) = n (MgCl_2)$ En conclusion , il faut introduire 2 mole de $MgCl_2$, d'où une masse : $m(MgCl_2) = n (MgCl_2) * M (MgCl_2) = 2,0 * (24+ 2*35,5) = 2,0 * 95$

masse minimale de MgCl₂ = 190 g

ii) Deuxième problème : quantité de $MgCl_2$ à introduire pour que C_P finale = 0,1 C_P initiale Cette condition peut se traduire aussi par 90 % du phosphore initialement présent dans l'effluent se retrouve dans le précipité formé

La réaction de précipitation étant quantitative et se faisant mole à mole , il faut alors introduire au minimum autant de Mg^{2+} que de phosphore disparu . Autrement dit

 $n(Mg^{2+}) = 0.90 \text{ n (P initial)}$, soit pour 5 m³ n $(Mg^{2+}) = 5*0.90*4.0.10^{-3}*1000 = 18 \text{ mole}$ Ce qui correspond à une masse de $MgCl_2$ **m** $(MgCl_2) = 18*95 = 1710 \text{ g ou 1,71 kg}$

En conclusion, masse totale de MgCl₂ à introduire

$$m = 190 + 1710 = 1900 g$$
 ou 1,90 kg

Remarque : la condition imposée dans l'enoncé, s'écrit $C_{P \, f} = 0.10 \, C_P$

Le pH étant maintenu à 9,5 , on a toujours $C_{P\,f}=[HPO_4^{2^-}]_f$ ainsi la condition cherchée s'écrit $[HPO_4^{2^-}]_f=0,10$ $[HPO_4^{2^-}]_{ini}$

Enfin on a
$$[PO_4^{3-}]f = \frac{K_{a3}C_{Pf}}{[H_3O^+]} = 0.1 \frac{K_{a3}C_P}{[H_3O^+]}$$
 soit $[PO_4^{3-}]_{f} = 0.10 [PO_4^{3-}]_{ini}$

Cette dernière égalité doit être justifiée et pas écrite directement . Elle n'est vérifiée que parce que le pH est maintenu constant...

Pour vérifier que l'hydroxyde de magnésium ne précipite pas , il faut vérifier que $[Mg^{2+}][HO^{-}]^2 < Ks_2$, ce qui suppose de connaître la concentration en ions Mg^{2+} .

Le précipité de struvite étant présent , on a $[Mg^{2+}][PO_4^{3-}][NH_4^+] = Ks_1$ Compte tenu de la remarque précédente : $[PO_4^{3-}] = 5,0 \cdot 10^{-7} \text{ molL}^{-1}$

D'autre part la formation du précipité entraine aussi la diminution de la concentration en azote , plus précisément il disparaît autant d'azote que de phosphore .

On a alors $C'_N = C_N - (90/100)C_P = 15.10^{-3} - 0.9*4,0.10^{-4} = 15.10^{-3} - 3.6.10^{-3} = 11.4.10^{-3} \text{ mol}L^{-1}$

Et comme précédement, le pH étant maintenu à 9,5, on obtient $[NH_4^+] = \frac{C'_N}{\left(1 + \frac{Ka}{[H_3O^+]}\right)}$

Soit $[NH_4^+] = 3.8.10^{-3} \text{ mol L}^{-1}$

On en déduit
$$[Mg^{2+}] = \frac{Ks1}{[NH_*][PO_*]^{3-}} = \frac{10^{-11}}{3.8.10^{-3} * 5.0.10^{-7}}$$
 $[Mg^{2+}] = 5,3. \ 10^{-3} \text{ molL}^{-1}$

Alors $[Mg^{2+}][HO^-]^2=5,3.10^{-3}*(10^{-4,5})^2=5,3.10^{-12}$ et $K_{s2}=10^{-10,4}=4,0.10^{-11}$ On a $[Mg^{2+}][HO^-]^2< K_{s2}$: l'hydroxyde de magnésium ne se forme pas

B4. Pour ne pas observer la précipitation de l'hydroxyde de magnésium , il faut que $[Mg^{2+}] \ [HO^-]^2 \ < K_{s2} \quad \text{soit} \quad \text{, avec pH} = 9,5 \quad \text{ou } [HO^-] = 10^{-4,5} : \quad \boxed{[Mg^{2+}] < 10^{-1,4} \approx 4,0.\ 10^{-2}\ \text{mol} L^{-1}}$

Or on a , en présence du précipité de struvite , $[Mg^{2+}][PO_4^{3-}][NH_4^+]=Ks_1$ Et si x désigne le pourcentage de phosphore précipité , on peut écrire $C'_P=(1-x)C_P$ et $C'_N=C_N-xC_P$

D'où, à pH = 9,5
$$[PO_4^{3-}] = \frac{K_{a3}(1-x)C_P}{[H_3O^+]} = (1-x)*5,0.10^{-6}$$

Et
$$[NH_4^+] = \frac{C'_N}{\left(1 + \frac{Ka}{[H_3O^+]}\right)} = \frac{15.10^{-3} - x * 4,0.10^{-3}}{(1 + \frac{10^{-9,2}}{10^{-9,5}})} \approx \frac{(15 - 4x)10^{-3}}{3,0}$$

Soit l'équation $4,0.10^{-2}$ (1-x)*5, 0.10^{-6} * (15-4x). 10^{-3} / $3 = 10^{-11}$ ou **(1-x) (15-4x) = 0,15** La résolution conduit à x = 0,986 soit **98,6 % de phosphore précipité**

Exercice 2:

S'approprier – Analyser

L'Objectif : déterminer la concentration du glucose

└Indication : molécule fortement colorée ⇒ utilisation de la spectrophotométrie , plus précisément la spectrophotométrie permet de déterminer la concentration en acide 3-amino-5-nitrosalicylique

⇒ établir une relation entre la concentration en glucose et en acide
 Nécessité de connaître l'équation bilan de la réaction entre le glucose et l'ADNS

1ère possibilité : On envisage un dosage indirect

Le dosage de l'ADNS par spectrophotométrie est un dosage par étalonnage,

⇒ tracer la courbe d'étalonnage représentant les variations de l'absorbance en fonction de [ADNS]

 $^{\perp}$ on se place dans les conditions d'application de la relation de Beer-Lambert : solutions infiniment diluées d'acide ADNS : $A = \epsilon 1 [ADNS]$

L le coefficient ε dépend de la longueur d'onde : recherche de la longueur d'onde de travail

⇒ tracer le spectre d'absorption pour l'acide [ADNS]

Réaliser

1 Equation bilan de la réaction

Il s'agit d'une réaction redox : son équation bilan se déduit des 2 demi équations électroniques :

RCHO +
$$H_2O$$
 \rightleftharpoons RCOO⁻ + 3 H⁺ + 2 e (glucose)
RNO₂ + 6 H⁺ + 6 e \rightleftharpoons RNH₂ + 2 H₂O (ADNS)

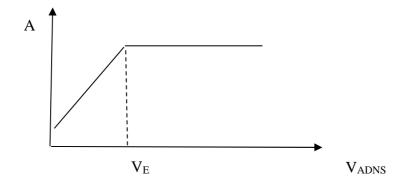
$$3 \text{ RCHO} + \text{RNO}_2 + \text{H}_2\text{O} \implies 3 \text{ RCOO}^- + 3 \text{ H}^+ + \text{RNH}_2$$

En milieu basique
$$3 \text{ RCHO} + \text{RNO}_2 + 3 \text{HO}^- \implies 3 \text{ RCOO}^- + \text{RNH}_2 + 2 \text{ H}_2 \text{O}$$

Si la réaction est quantitative et le glucose le réactif en défaut $[RNH_2] = [RCHO]/3$ Dans la solution à doser on introduit sans variation de volume de l'acide ADNS <u>en excès</u> (sous forme solide)

On note S la solution obtenue

- (2) Réaliser le **spectre d'absorption d'une solution d'ADNS** (on se place en milieu basique) : $A(\lambda)$ Pour chaque longueur d'onde il faudra faire le zéro Sur la courbe $A(\lambda)$, repérer la longueur d'onde du maximum d'absorbance, ce sera la longueur d'onde de travail λ_{max}
- (3) Réaliser la courbe d'étalonnage


Préparer(en milieu basique) différentes solutions de concentrations variables en ADNS Pour chacune des solutions, mesurer l'absorbance en se plaçant à $\lambda = \lambda_{max}$

4 Mesurer l'absorbance de la solution S et reporter le point sur la courbe précédente . On en déduit la concentration en [RNH2] puis celle en glucose .

2^{ème} possibilité: On envisage un dosage volumétrique de la solution de glucose.

- 1 On détermine la longueur d'onde de travail comme ci-dessus
- (2) A la solution de glucose, on ajoute progressivement un volume V d'une solution d' ADNS de concentration connue et après chaque ajout on mesure l'absorbance de la solution.

On trace la courbe A en fonction de V, elle aura l'allure suivante :

Le volume V_E marque la fin de la réaction , c'est-à-dire la consommation de la totalité du glucose . On aura alors

n (glucose) =
$$3 \text{ n}$$
 (ADNS) = 3 C V_E