Chapitre B13 Espaces vectoriels euclidiens

Tous les espaces vectoriels de ce chapitre sont des espaces vectoriels $r\acute{e}els$, c'est-à-dire des espaces vectoriels sur \mathbb{R} .

I. Produit scalaire

A. Définitions

Définition. Soit E un espace vectoriel réel. Un <u>produit scalaire</u> sur E est une forme bilinéaire symétrique définie positive, i.e., une application

$$\varphi: E \times E \longrightarrow \mathbb{R}$$
$$(u, v) \longmapsto (u \mid v)$$

vérifiant les propriétés :

• φ est bilinéaire : $\forall (u, u', v, v') \in E^4 \quad \forall \lambda \in \mathbb{R}$

$$(\lambda u + u' | v) = \lambda (u | v) + (u' | v)$$

$$(u | \lambda v + v') = \lambda (u | v) + (u | v')$$

- φ est symétrique : $\forall (u, v) \in E^2$ $(u \mid v) = (v \mid u)$
- φ est <u>définie positive</u> : $\forall u \in E$ $(u \mid u) \geqslant 0$ et

$$(u \mid u) = 0_{\mathbb{R}} \quad \Longleftrightarrow \quad u = 0_E$$

Notation. On note le produit scalaire $(u \mid v)$ ou $\langle u, v \rangle$ ou $u \cdot v$.

Exemple 1. Le *produit scalaire usuel* sur \mathbb{R}^n est défini pour tous $u=(x_1,\ldots,x_n)$ et $y=(y_1,\ldots,y_n)$ de \mathbb{R}^n par :

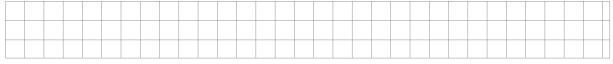
$$(u \mid v) = x_1 y_1 + \dots + x_n y_n$$

C'est la généralisation en dimension n des produits scalaires classiques sur \mathbb{R}^2 et \mathbb{R}^3 .

Exemple 2. Un autre produit scalaire sur \mathbb{R}^3 :

$$\forall u = (x, y, z) \quad \forall v = (x', y', z') \qquad (u \mid v) = xx' + 2yy' + 7zz'$$

Exemple 3. Produit scalaire sur l'espace vectoriel $\mathscr{C}([a,b],\mathbb{R})$ (avec a < b) :



 \triangleright Exercices 1, 2.

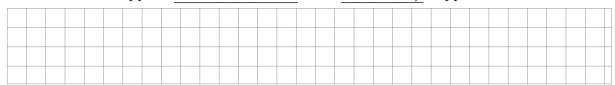
Définitions.

- (i) Un espace préhilbertien est un espace vectoriel E muni d'un produit scalaire φ .
- (ii) Un espace euclidien est un espace vectoriel réel E de dimension finie muni d'un produit scalaire φ .

B. Norme

Notation. Dans tout ce qui suit (E,φ) désigne un espace préhilbertien réel, et on note $(u \mid v) = \varphi(u,v)$.

Définition. On appelle norme euclidienne de E associée a φ l'application :



Remarque. On sait que (u | u) est positif pour tout $u \in E$ car le produit scalaire est défini positif, donc la norme de u est bien définie.

Notation. On note $||u|| = N(u) = \sqrt{(u \mid u)}$.

Exemple. Pour tout $u = (x, y) \in \mathbb{R}^2$ on pose :

$$N(u) = \sqrt{x^2 + y^2}$$

Alors N est la norme associée au produit scalaire usuel sur \mathbb{R}^2 .

Exemple 1 (suite). Pour tout $u = (x_1, ..., x_n) \in \mathbb{R}^n$ on pose :

$$N(u) = \sqrt{x_1^2 + \dots + x_n^2}$$

Alors N est la norme associée au produit scalaire usuel sur \mathbb{R}^n .

Exemple 4. Soit $E = \mathbb{R}$. L'application $(x, y) \mapsto xy$ est un produit scalaire sur \mathbb{R} .

La norme associée à ce produit scalaire est l'application $x \mapsto \sqrt{x^2} = |x|$.

Ainsi la valeur absolue est une norme euclidienne sur R.

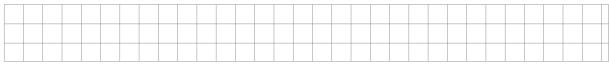
Définition. Un vecteur u de E est dit unitaire si ||u|| = 1.

Exemple 5. Soit u un vecteur non-nul de E. Alors $\frac{1}{||u||}$ est un réel. Le vecteur $\frac{u}{||u||} = \frac{1}{||u||} \cdot u$ est unitaire.

Théorème (Inégalité de Cauchy-Schwarz). Soit E un espace vectoriel réel muni d'un produit scalaire. Alors :

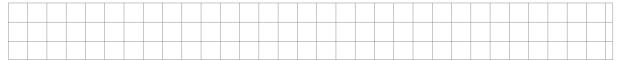
L'égalité a lieu si et seulement si u et v sont colinéaires.

Remarque. Cette inégalité équivaut à :



Corollaire (Inégalité de Cauchy-Schwarz pour les intégrales).

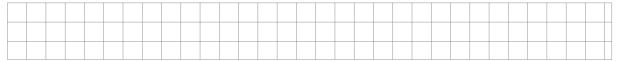
Pour toutes fonctions f et g continues sur [a,b] (avec a < b):



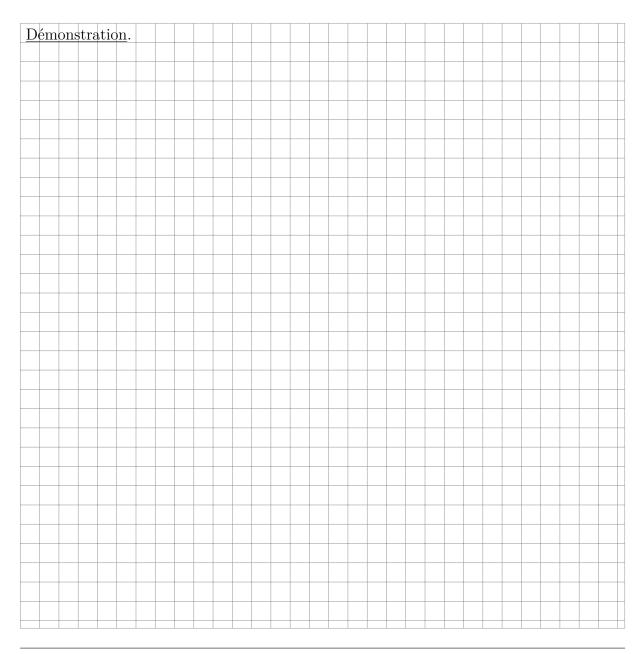
L'égalité a lieu si et seulement si f et g sont proportionnelles.

Corollaire (Inégalité de Cauchy-Schwarz pour les réels).

Soit $x = (x_1, \dots, x_n)$ et $y = (y_1, \dots, y_n)$ deux n-uplets de réels. Alors :



L'égalité a lieu si et seulement si x et y sont proportionnels.



Proposition. Soit $u \mapsto ||u||$ une norme euclidienne sur E. Alors

- $\forall u \in E \quad ||u|| \geqslant 0$
- $\forall u \in E \quad (||u|| = 0 \iff u = 0) \quad (Séparation)$
- $\forall u \in E \quad \forall \lambda \in \mathbb{R} \quad ||\lambda u|| = |\lambda| \, ||u|| \quad (Homog\acute{e}n\acute{e}it\acute{e})$
- ∀(u, v) ∈ E² ||u + v|| ≤ ||u|| + ||v|| (Inégalité triangulaire)
 L'égalité a lieu si et seulement si u et v sont colinéaires de même sens, i.e., u = 0_E ou il existe λ réel positif tel que v = λu.

Remarque. Une application $N: E \to \mathbb{R}$ vérifiant les quatre propriétés ci-dessus est appelée <u>norme</u> de E. Toutes les normes ne sont pas euclidiennes (*i.e.*, ne proviennent pas d'un produit scalaire).

<u>Démonstration</u>. On rappelle que $||u|| = \sqrt{(u|u)}$. Ceci justifie la première propriété. La séparation et l'homogénéité sont conséquences du fait que le produit scalaire est défini positif et bilinéaire.

Il reste à démontrer l'inégalité triangulaire et son cas d'égalité.

Soit u et v deux vecteurs de E. On calcule :

$$||u+v||^2 = (u+v|u+v) = ||u||^2 + ||v||^2 + 2(u|v)$$
 et
$$(||u|| + ||v||)^2 = ||u||^2 + ||v||^2 + 2||u||.||v||$$

D'après l'inégalité de Cauchy-Schwarz :

$$||u+v||^2 \le (||u||+||v||)^2$$

On en déduit l'inégalité triangulaire, car une norme est toujours positive.

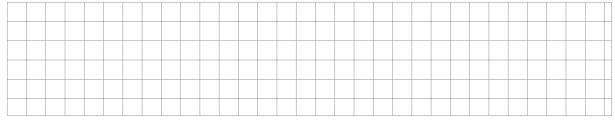
De plus, d'après le cas d'égalité de l'inégalité de Cauchy-Schwarz, l'égalité ||u+v|| = ||u|| + ||v|| a lieu si et seulement si u et v sont colinéaires et $(u \mid v) \ge 0$.

Supposons que u est non-nul et colinéaire à v. Alors $v = \lambda u$ avec $\lambda \in \mathbb{R}$, ce qui donne $(u \mid v) = \lambda ||u||^2$. Donc $(u \mid v) \geqslant 0$ si et seulement si λ est positif.

Si u est nul alors l'inégalité triangulaire est une égalité.

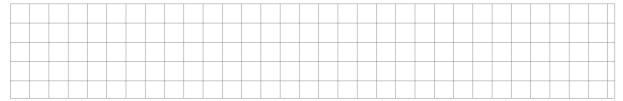
Finalement le cas d'égalité dans l'inégalité triangulaire a lieu si et seulement si u et v sont colinéaires de même sens.

Propositions. Pour tous vecteurs u et v de E:



Remarque. Grâce à l'identité de polarisation, lorsque l'on connaît une norme euclidienne sur E, on peut retrouver le produit scalaire auquel elle est associée.

Remarque. Autres formules, valables pour tous vecteurs u et v de E:



> Exercice 3.

Exemple 6. Soit (Ω, P) un espace probabilisé fini.

Une variable aléatoire Z est centrée si E(Z) = 0.

Par exemple si X est une variable aléatoire alors Z = X - E(X) est centrée.

L'ensemble des variables aléatoires réelles centrées sur Ω est un espace vectoriel.

La covariance Cov(X,Y) = E(XY) - E(X)E(Y) est un produit scalaire sur cet espace vectoriel.

La norme associée est l'écart-type.

D'après l'inégalité de Cauchy-Schwarz : $|Cov(X,Y)| \leq \sigma(X)\sigma(Y)$

Ceci montre que le coefficient de corrélation linéaire appartient à l'intervalle [-1, 1].

II. Orthogonalité

On désigne toujours par E un espace vectoriel réel muni d'un produit scalaire φ , et on note $(u \mid v) = \varphi(u, v)$.

A. Vecteurs et sous-espaces orthogonaux

Définition. On dit que deux vecteurs u et v de E sont <u>orthogonaux</u> si leur produit scalaire est nul : $(u \mid v) = 0$.

Exemple 7. Soit $E = \mathcal{C}([0,1], \mathbb{R})$, muni du produit scalaire $(f \mid g) = \int_0^1 fg$. Alors les fonctions $f: t \mapsto 1$ et $g: t \mapsto t - \frac{1}{2}$ sont orthogonales.

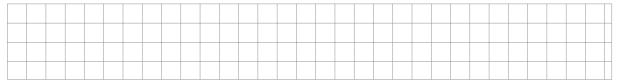
Ce n'est pas en lien avec l'orthogonalité de leurs courbes représentatives.

Définition. Deux sous-espaces vectoriels F et G de E sont dits orthogonaux si :

$$\forall (u, v) \in F \times G \qquad (u \mid v) = 0$$

Remarque. Dans ce cas $F \cap G = \{0_E\}$, *i.e.*, F et G sont en somme directe. En effet, si $u \in F \cap G$ alors u est élément de F et de G, donc comme F et G sont orthogonaux alors $(u \mid u) = 0$, puis u = 0.

Définition. Soit F une partie de E. On appelle <u>orthogonal</u> de F et on note F^{\perp} l'ensemble des vecteurs de E orthogonaux à tous les vecteurs de F:



Remarque. F et F^{\perp} sont orthogonaux, et donc $F \cap F^{\perp} \subseteq \{0_E\}$.

Exemple 8. $E^{\perp} = \{0_E\}$ et $\{0_E\}^{\perp} = E$.

Propositions.

(i) Pour toute partie F de E: $F \subseteq (F^{\perp})^{\perp}$

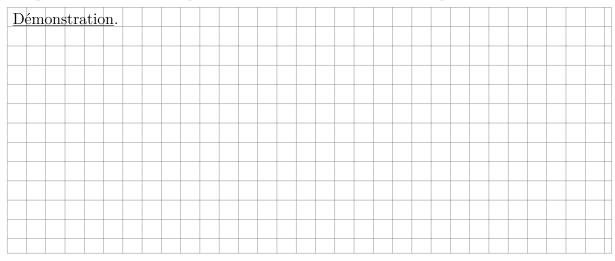
(ii) Pour toutes parties F et G de E : Si $F \subseteq G$ alors $G^{\perp} \subseteq F^{\perp}$

(iii) Pour toute partie F de E: $(\operatorname{Vect} F)^{\perp} = F^{\perp}$.

Remarque. Soit F un sous-espace vectoriel de E et \mathcal{B} une base de F. Alors la dernière proposition montre que $F^{\perp} = \mathcal{B}^{\perp}$, donc :

 $Un\ vecteur\ est\ orthogonal\ \grave{a}\ F\ si\ et\ seulement\ s'il\ est\ orthogonal\ \grave{a}\ une\ base\ de\ F.$

Proposition. Soit F une partie de E. Alors F^{\perp} est un sous-espace vectoriel de E.



Exercice 4.

B. Familles orthogonales

Définition. Une famille (e_1, \ldots, e_n) d'éléments de E est dite <u>orthogonale</u> si tous ses éléments sont orthogonaux deux-à-deux :

$$\forall (i, j) \in \{1 ... n\}^2 \text{ avec } i \neq j \qquad (e_i | e_j) = 0$$

Proposition. Une famille orthogonale ne contenant pas le vecteur nul est libre.

Théorème de Pythagore. $Si\ (e_1,\ldots,e_n)$ est une famille orthogonale de vecteurs de E alors :

$$\left\| \sum_{i=1}^{n} e_i \right\|^2 = \sum_{i=1}^{n} ||e_i||^2$$

Exemple 9. Pour deux vecteurs \vec{u} et \vec{v} orthogonaux de \mathbb{R}^2 on retrouve le théorème de Pythagore classique :

$$||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2$$

<u>Démonstration</u>. En utilisant la bilinéarité du produit scalaire et le fait que la famille $(e_i)_i$ est orthogonale on obtient :

$$\left\| \sum_{i=1}^{n} e_i \right\|^2 = \left(\sum_{i=1}^{n} e_i \, \left| \, \sum_{j=1}^{n} e_j \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} (e_i \, | \, e_j) = \sum_{i=1}^{n} (e_i \, | \, e_i) = \sum_{i=1}^{n} ||e_i||^2 \right)$$

Définition. Une famille (e_1, \ldots, e_n) est dite <u>orthonormée</u> si elle est orthogonale et si tous ses vecteurs sont unitaires : :

$$\forall (i,j) \in \{1,\ldots,n\}^2$$
 $(e_i | e_j) = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$

Remarque. On note:
$$\delta_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$$

et on appelle <u>symbole</u> de Kronecker cette fonction. Par exemple la matrice identité est la matrice dont <u>le coefficient</u> (i, j) est le symbole de Kronecker δ_{ij} .

III. Espaces vectoriels euclidiens

Rappel. Un espace euclidien est un espace vectoriel

- (i) réel
- (ii) de dimension finie
- (iii) muni d'un produit scalaire, que nous noterons $(u \mid v)$.

On note $n = \dim E$.

A. Bases orthonormées

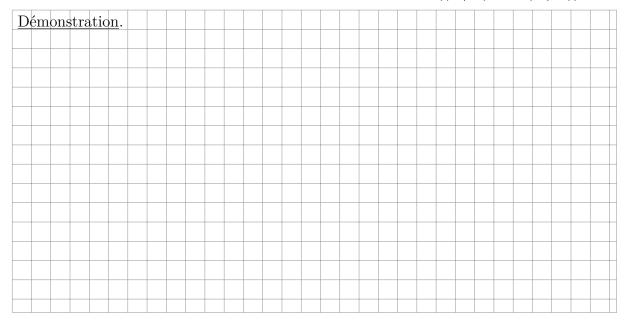
Proposition. Une famille orthonormée de n vecteurs est une base de E.

<u>Démonstration</u>. En effet, les vecteurs de cette famille sont non-nuls car ils sont de norme 1, il forment donc une famille orthogonale de vecteurs non-nuls. Par propriété cette famille est libre, donc elle est libre maximale, et ainsi elle forme une base de E.

Théorème. Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormée de E. Alors pour tout u de E:

$$u = \sum_{i=1}^{n} (u \mid e_i) e_i$$

En d'autres termes, les coordonnées de u dans la base \mathscr{B} sont $((u \mid e_1), \ldots, (u \mid e_n))$.



\triangleright Exercice 5.

Proposition. Soit u et v deux vecteurs de E, de coordonnées respectives (x_1, \ldots, x_n) et (y_1, \ldots, y_n) dans une base orthonormée de E. Alors :

$$(u | v) = \sum_{k=1}^{n} x_k y_k$$
 et $||u|| = \sqrt{\sum_{k=1}^{n} x_k^2}$

Remarque. Ainsi on applique les mêmes formules qu'avec le produit scalaire usuel, pourvu que les coordonnées soient exprimées dans une base orthonormée.

<u>Démonstration</u>. Soit (e_1, \ldots, e_n) une base orthonormée de E dans laquelle u et v admettent pour coordonnées respectives (x_1, \ldots, x_n) et (y_1, \ldots, y_n) .

Alors $u = \sum_{i=1}^{n} x_i e_i$ et $v = \sum_{j=1}^{n} y_j e_j$. La bilinéarité du produit scalaire donne :

$$(u | v) = \left(\sum_{i=1}^{n} x_i e_i \middle| \sum_{j=1}^{n} y_j e_j \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j (e_i | e_j)$$

Comme la famille (e_1, \ldots, e_n) est une base orthonormée alors

$$\forall (i,j) \in \{1,\ldots,n\}^2 \qquad (e_i \mid e_j) = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$$

Ceci montre que
$$(u | v) = \sum_{i=1}^{n} x_i y_i (e_i | e_i) = \sum_{i=1}^{n} x_i y_i.$$

Si u = v alors $||u||^2 = (u | u)$, donc la seconde propriété découle de la première.

B. Orthonormalisation

Remarque. Le procédé d'orthonormalisation de Gram-Schmidt est nommé ainsi en l'honneur de Jørgen Gram, Danemark, 1850 – 1916 et Erhard Schmidt, Allemagne, 1876 – 1959, mais il était déjà connu au XVIIIème siècle.

C'est un algorithme permettant d'obtenir une base orthonormée à partir d'une base.

Exemple 10. On munit $E = \mathbb{R}^3$ de son produit scalaire usuel, et on définit :

$$u_1 = (1, 1, 1)$$
 $u_2 = (1, 2, 0)$ $u_3 = (2, 0, 3)$

La famille (u_1, u_2, u_3) est une base car son déterminant est non-nul.

On orthonormalise cette base de la façon suivante :

Étape 1. On construit une base orthogonale (v_1, v_2, v_3) en posant :

$$v_1 = u_1$$

$$v_2 = u_2 + \lambda v_1$$

$$v_3 = u_3 + \alpha v_1 + \beta v_2$$

où λ , α et β sont des scalaires, choisis de façon à ce que la famille (v_1, v_2, v_3) soit orthogonale.

Pour ceci on pose $(v_1 | v_2) = 0$, puis $(v_1 | v_3) = (v_2 | v_3) = 0$. En utilisant la linéarité à droite du produit scalaire on obtient $\lambda = -1$, puis $\alpha = -\frac{5}{3}$ et $\beta = \frac{3}{2}$.

On a maintenant une base orthogonale (v_1, v_2, v_3) avec :

$$v_1 = (1, 1, 1)$$
 $v_2 = (0, 1, -1)$ $v_3 = \frac{1}{6}(2, -1, -1)$

Étape 2. On normalise cette base en posant:

$$\forall i = 1, 2, 3$$
 $\varepsilon_i = \frac{v_i}{||v_i||}$

On obtient:
$$\varepsilon_1 = \frac{1}{\sqrt{3}}(1, 1, 1)$$
 $\varepsilon_2 = \frac{1}{\sqrt{2}}(0, 1, -1)$ $\varepsilon_3 = \frac{1}{\sqrt{6}}(2, -1, -1)$

La famille $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base orthonormée.

\triangleright Exercices 6, 7.

Théorème. Soit (u_1, \ldots, u_p) une famille libre d'éléments de E. Alors il existe une famille orthonormée $(\varepsilon_1, \ldots, \varepsilon_p)$ d'éléments de E telle que pour tout $k = 1 \ldots p$:

$$\operatorname{Vect}(u_1,\ldots,u_k) = \operatorname{Vect}(\varepsilon_1,\ldots,\varepsilon_k)$$

<u>Démonstration</u>. L'hypothèse implique que $p \leq n$, puisqu'une famille libre d'un espace vectoriel de dimension n a au plus n éléments.

Pour tout $k = 1 \dots p$ on pose $F_k = \text{Vect}(u_1, \dots, u_k)$.

On démontre le théorème par récurrence finie sur $m \in \{1, ..., p\}$.

L'initialisation est obtenue en posant : $\varepsilon_1 = \frac{u_1}{||u_1||}$

Supposons que la propriété est établie au rang m-1, pour un certain $m \in \{2, \ldots, p\}$. L'hypothèse de récurrence donne une famille orthonormée $(\varepsilon_1, \ldots, \varepsilon_{m-1})$ d'éléments de E telle que pour tout $k = 1 \ldots m-1$:

$$\operatorname{Vect}(u_1,\ldots,u_k) = \operatorname{Vect}(\varepsilon_1,\ldots,\varepsilon_k)$$

On note:

$$v_m = u_m + \sum_{k=1}^{m-1} \alpha_k \varepsilon_k \tag{1}$$

où les $\alpha_1 \dots \alpha_{m-1}$ sont des réels.

La famille $(\varepsilon_1, \dots, \varepsilon_m)$ est orthogonale si et seulement si $(\varepsilon_j | v_m) = 0$ pour tout $j = 1 \dots m - 1$. Or:

$$\forall j = 1 \dots m - 1 \qquad (\varepsilon_j \mid v_m) = (\varepsilon_j \mid u_m) + \sum_{k=1}^{m-1} \alpha_k (\varepsilon_j \mid \varepsilon_k) = (\varepsilon_j \mid u_m) + \alpha_j$$

On pose donc:

$$\forall j = 1 \dots m - 1$$
 $\alpha_j = -(\varepsilon_j \mid u_m)$

Comme la famille $\varepsilon_1 \dots \varepsilon_{m-1}$ est orthonormée alors :

$$\forall j = 1 \dots m - 1 \qquad (\varepsilon_j \mid v_m) = 0$$

Ainsi la famille $(\varepsilon_1, \ldots, \varepsilon_{m-1}, v_m)$ est orthogonale.

Le vecteur v_m ne peut être nul, sinon on aurait d'après (1)

$$u_m \in \text{Vect}(\varepsilon_1, \dots, \varepsilon_{m-1}) = F_{m-1}$$

et ceci donnerait une contradiction car F_{m-1} est l'espace vectoriel engendré par la famille u_1, \ldots, u_{m-1} et la famille (u_1, \ldots, u_m) est libre.

Ainsi v_m est non-nul. On pose $\varepsilon_m = \frac{v_m}{||v_m||}$. La famille $(\varepsilon_1, \dots, \varepsilon_m)$ est alors orthonormée.

Par construction $v_m \in F_m$, donc $\text{Vect}(\varepsilon_1, \dots, \varepsilon_m) \subseteq F_m$. Les familles (u_1, \dots, u_m) et $(\varepsilon_1, \dots, \varepsilon_m)$ sont libres, donc par égalité de dimension :

Vect
$$(\varepsilon_1, \ldots, \varepsilon_m) = F_m$$

Ceci montre que la propriété est héréditaire.

On a démontré le théorème par récurrence.

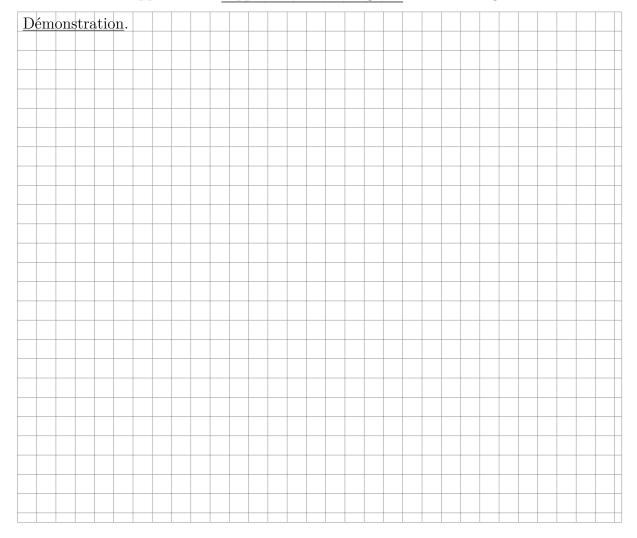
Corollaire. Tout espace euclidien possède des bases orthonormées.

<u>Démonstration</u>. En effet, on sait que tout espace vectoriel de dimension finie possède des bases. Il suffit donc d'en choisir une, et de l'orthonormaliser, i.e., d'appliquer le théorème précédent.

C. Supplémentaire orthogonal

Proposition. Si F est un sous-espace vectoriel d'un espace euclidien alors F et F^{\perp} sont supplémentaires.

Définition. On appelle alors supplémentaire orthogonal de F l'orthogonal de F.



Corollaire. Soit F un sous-espace vectoriel de E. Alors :

(i)
$$\dim F^{\perp} = n - \dim F$$
 (ii) $(F^{\perp})^{\perp} = F$

<u>Démonstration</u>. La propriété (i) est immédiate car $F \oplus F^{\perp} = E$.

Pour la seconde, on sait que $F \subseteq (F^{\perp})^{\perp}$, même si E n'est pas de dimension finie.

Si E est de dimension finie n alors

$$\dim(F^{\perp})^{\perp} = n - \dim F^{\perp} = n - (n - \dim F) = \dim F$$

donc par théorème : $(F^{\perp})^{\perp} = F$

> Exercice 8.

D. Projecteurs orthogonaux

Définition. Soit F un sous-espace vectoriel d'un espace euclidien E. Le <u>projecteur orthogonal</u> de E sur F est le projecteur de E sur F parallèlement à F^{\perp} .

Remarque. Par définition, si u est un vecteur de E, alors u - p(u) est élément du noyau de p, donc u - p(u) est orthogonal à F.

Proposition. Soit (e_1, \ldots, e_m) une base orthonormée de F, et p le projecteur orthogonal de E sur F. Alors :

$$\forall u \in E$$
 $p(u) = \sum_{k=1}^{m} (u \mid e_k) e_k$

<u>Démonstration</u>. Soit $v = \sum_{k=1}^{m} (u | e_k) e_k$. Comme dans la démonstration précédente, on démontre que u - v est élément de F^{\perp} . Ceci donne u = v + (u - v) avec $v \in F = \operatorname{im} p$ et $u - v \in F^{\perp} = \ker p$, donc v = p(u).

Remarque. Soit (e_1, \ldots, e_m) une base orthonormée de F, et (e_{m+1}, \ldots, e_n) est une base orthonormée de F^{\perp} .

D'après le théorème de la base adaptée (e_1, \ldots, e_n) est une base orthonormée de E. Donc :

$$\forall u \in E \qquad u = (u \mid e_1) e_1 + \dots + (u \mid e_n) e_n.$$

Par définition de p on retrouve :

$$\forall u \in E$$
 $p(u) = (u | e_1) e_1 + \dots + (u | e_m) e_m.$

Théorème. Soit F un sous-espace vectoriel de E et p le projecteur orthogonal de E sur F. Alors pour tout $u \in F$:

- $(i) ||p(u)|| \leqslant ||u||$
- (ii) p(u) est l'unique vecteur u_0 de F tel que $||u u_0|| = \underset{v \in F}{\min} ||u v||$.

Définition. Soit F un sous-espace vectoriel de E, et u un élément de E. On appelle distance de u à F le réel :

$$d(u, F) = \min_{v \in F} ||u - v||$$

Remarque. Ainsi, la distance de u à F est la distance de u à p(u).

Démonstration.

(i) On sait que u - p(u) et p(u) sont orthogonaux. D'après le théorème de Pythagore :

$$||u||^2 = ||u - p(u)||^2 + ||p(u)||^2$$

Ceci implique

$$||p(u)||^2 \leqslant ||u||^2$$

et comme les normes sont positives alors $||p(u)|| \leq ||u||$.

(ii) Pour tout $v \in F$:

$$u - v = (u - p(u)) + (p(u) - v)$$
 avec
$$\begin{cases} u - p(u) \in F^{\perp} \\ p(u) - v \in F \end{cases}$$

D'après le théorème de Pythagore :

$$||u - p(u)|| \leqslant ||u - v||$$

Cette égalité est stricte dès que $v \neq p(u)$.

Ceci montre que :

$$||u - p(u)|| \leqslant \inf_{v \in F} ||u - v||$$

Comme p(u) est l'un des éléments de F alors :

$$||u - p(u)|| = \min_{v \in F} ||u - v||$$

Nous avons vu que si v est un élément de F différent de p(u) alors :

$$||u - p(u)|| < ||u - v||$$

Ceci montre l'unicité de l'élément u_0 de F vérifiant $||u-u_0|| = \underset{v \in F}{\text{Min}} ||u-v||$.

Remarque. Soit E est un espace vectoriel réel préhilbertien et F un sous-espace vectoriel de dimension finie m. En d'autres termes on ne suppose plus que E est de dimension finie. Soit (e_1, \ldots, e_m) une base orthonormée de F et p l'application :

$$p: E \longrightarrow E$$

$$u \longmapsto \sum_{k=1}^{m} (u \mid e_k) e_k$$

Alors p est un projecteur de E et le théorème ci-dessus est toujours valable.

Exemple 11. Soit $E = \mathbb{R}^3$, muni du produit scalaire usuel. Soit $u_1 = (1, 2, 2)$. Soit p le projecteur orthogonal de E sur $F = \text{Vect } (u_1)$.

- a. Déterminer la matrice de p dans la base canonique.
- b. Calculer la distance de v = (6, 5, 4) à la droite vectorielle F.
- c. Soit q le projecteur orthogonal de E sur F^{\perp} . Déterminer la matrice Q de q dans la base canonique.

Exercices 9, 10, 11.