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Chapitre B8
Espaces vectoriels

Dans tout ce chapitre, K désigne R ou C. On appelle scalaires ses éléments.

I. Espaces vectoriels

A. Définitions

ﬁ( Définitions |
Un espace vectoriel sur I ou K-espace vectoriel est un ensemble £ dont les éléments
sont appelés vecteurs, muni de deux opérations

+:ExE — F et - KxE — FE
(u,v) — u+v (A, u) — Au

appelées addition et multiplication par un scalaire, satisfaisant les propriétés :

o L’addition est commutative : V(u,v) € E? utv=v+u
+ L’addition est associative :  V(u,v,w) € E? (u+v)+w=u+ (v+w)
o Il existe un vecteur de F noté Og et appelé vecteur nul, tel que :
Yue FE u+0g=0g4+u=u
o Tout vecteur u de E possede un opposé noté —u, satisfaisant :
u+ (—u) = (—u) +u=0g
Onnote wv—u aulieude v+ (—u).

La multiplication par un scalaire vérifie :

e VO pu) €eK?* YueE  (Aw)u= Npu)

e VO pu) €K? Yue B (A4 p)u= I+ pu
e VAeK V(u,v)e E* ANu+v)= M+ v
e Yuek lxu =u

Remarques.

o L’addition est une loi de composition interne alors que la multiplication par un scalaire
est une loi de composition externe.

 Les quatre premiers points signifient que (£, +) est un groupe abélien.

Ainsi un espace vectoriel est un triplet (E,+,-) ou (E,+) est un groupe abélien et -
est une loi vérifiant les propriétés ci-dessus.
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Chapitre B8. Espaces vectoriels 1. Espaces vectoriels

/_[ Propositions )
Pour tout (u,v) € E? et tout (\, u) € K? :
(i) Ogu = 0g
(it) N0g = O
(iii) (—1g)u = —u
(iv) (A — p)u = Au— pu
(v) AMu—v)=Au— v

Démonstrations.

/_[ Proposition j
Soit w € E et A € K. Alors :

A= 0g — (A=0kg ou wu=0g)

Démonstration.
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Chapitre B8. Espaces vectoriels I. Espaces vectoriels

B. Espaces vectoriels de référence

o FEspace vectoriel des n-uplets a coefficients dans K

K ={(@,...,z) | Vi=1,...,n z€K} (neN)

Si z=(11,...,%,) y=(y1,---,yn) et Xe€IK alors:
r+y=(r1+y, -, Tn+Yn) et A = (Azq, ..., \xy,)
Opposé : —x = (—x1,...,—Ty) Vecteur nul : Og» = (0,...,0)

Exemples. R? R3? maisaussi K!'=K K°= {0}

o Espace vectoriel des matrices de taille (n,p) a coefficients dans K

| Mop(K)  (npENY)

Si A= <a”)§§§; B = (bij)ici<n et A€ K alors:

1<jsp

A + B = ((l,’j + bl]) <ign et A = ()\aij) 1232

1
1<i<p

Opposé : —A = <_az‘j)}§;‘§<n Vecteur nul : 04, &) = Onp = (0)15;3

<p ISP
o Espace vectoriel des polynomes da coefficients dans K

K[X]

+00 +00
Si P:Zaka Q:Zkak et X\ e IKalors:
k=0

k=0
+o0 too
P+Q=> (ar+b)X* et AP=) AgpX"
k=0 k=0
+oo +o00o
Opposé : —P = Z—aka Vecteur nul : Ogx] = ZOKXk = Ok
k=0 k=0

o Espace vectoriel des applications de Q0 dans K, ou € est un ensemble non-vide

K on FQK) |

Si f et g sont deux applications de €2 dans K et A € KK alors on définit :

f+g9: Q0 —K et Af Q0 — K
r — f(z)+ g(x) r — X f(x)

En d’autres termes :
Ve  (f+g)(z)=f(z)+g(x) et  (Af)(2)=A(f(2))

Opposé : —f est 'application x — — f(x) Vecteur nul : Oge est 'application x — Ok
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Chapitre B8. Espaces vectoriels 1. Espaces vectoriels

Exemples.
- RE est lespace vectoriel des applications de R dans R, aussi noté F(R, R).

- RN est I'espace vectoriel des suites indexées par IN & valeurs dans R, avec :
(UN)HE]N + (UH)NE]N - (un + Un)ne]N et )‘(un)nE]N = ()‘un)nelN

- R® avec 2 = {1,...,n} est naturellement identifié¢ & I’espace vectoriel R".

o Produit cartésien de deux IK-espaces vectoriels :

Soit E et I’ deux K-espaces vectoriels. Le produit cartésien des ensembles E et F' est :

[EXF:{(x,nyeEetyeF} |

Il est un K-espace vectoriel si on le munit des opérations suivantes :

Pour tous (z,y), (z/,y') éléments de £ x F' et A scalaire on pose :

() + @ y)=(@+2 y+y) et Aaz,y) = Az, \y)
Opposé : —(z,y) = (—z, —y) Vecteur nul : Opyr = (0g,0F)

o Produit cartésien de n espaces vectoriels :

Plus généralement, si (E;);—1,.., est une famille d’espaces vectoriels sur K, alors
By x--xE, =[] E

est un K-espace vectoriel, muni des opérations évidentes d’addition et de multiplication
par un scalaire termes a termes.

ﬁ[ Définition (Hors programme) j
Une algebre sur K, ou K-algébre est un ensemble A munit de deux lois de composition
internes + et X et d’une loi de composition externe - tels que

e (A, +,-) est un espace vectoriel
e (A, +, X) est un anneau
e Pour tous u, v dans A et X dans K : A(u x v) = (Au) X v = u x (\v).

Exemples. Z(R,R) RN K[X] u,(K) sont des algebres.
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Chapitre B8. Espaces vectoriels 1. Sous-espaces vectoriels

I1. Sous-espaces vectoriels

A. Définition et exemples

| Définition
Soit E un espace vectoriel sur K. Un sous-espace vectoriel de E est une partie F' de
E non-vide, stable par addition et par multiplication par un scalaire, i.e., telle que :

V(u,v) € F? utveF
YVue F VAeK Au € F

Proposition (Caractérisation des sous-espaces vectoriels) j

Un ensemble F' est un sous-espace vectoriel de E si et seulement si :
(i) FCE

(i) O € F

(ii)) V(u,v) € F? VAeK  Iu+veF

Démonstration. Si F' est une partie non-vide de E alors elle contient un vecteur . Comme
Ok € K alors Ogxu € F, donc Og € F.

Le reste se démontre facilement. O

Remarque. Pour démontrer qu'un ensemble F' est un sous-espace vectoriel de E on utilise
la caractérisation plutot que la définition.

Proposition J

Si F' est un sous-espace vectoriel de E alors F' est un espace vectoriel. }

Démonstration. L’ensemble F' est stable par les lois d’addition et de multiplication par
un scalaire de F, ce qui permet de définir les lois induites :

+: FxF—>F et K xF—F

Comme elles vérifient les axiomes de définition d'un espace vectoriel dans E alors elles
vérifient aussi ces lois dans F'. 0J

Remarque. Pour démontrer qu'un ensemble E est un espace vectoriel, il est souvent
plus facile de vérifier qu’il est un sous-espace vectoriel d'un espace vectoriel de référence,
comme R", F(I,R), RN ou R[X].

_ | Définition N

Soit uy, us, ..., u, des éléments de E et A\{, Ag, ..., A, des scalaires. Alors le vecteur

Auq + Aous + -+ Aug,

est appelé combinaison linéaire des vecteurs uy, us, ..., Uy,.
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Chapitre B8. Espaces vectoriels I1. Sous-espaces vectoriels

Remarques.

» Une combinaison linéaire de plusieurs vecteurs d’un espace vectoriel est élément de cet
espace vectoriel, car un sous-espace vectoriel est stable par addition et multiplication
par un scalaire.

* Un sous-espace vectoriel de E est une partie non-vide de E stable par combinaisons
linéaires.

e Quel que soit I'espace vectoriel E, les ensembles {0g} et E sont deux sous-espaces
vectoriels de F.

Exemples géométriques.

 Soit @ un vecteur non-nul de R?. L’ensemble des combinaisons linéaires de @ est 1’en-

semble :
{M | e R}

Il s’agit de la droite passant par l'origine, de vecteur directeur .

C’est un sous-espace vectoriel de R2.

e Soit @ et ¥ deux vecteurs de R3. L’ensemble des combinaisons linéaires de @ et 7 est
Pensemble

{X@+pv | (N p) € R}

Si @ et ¥ ne sont pas colinéaires alors il s’agit du plan contenant I'origine, dirigé par
les vecteurs 4 et .
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Chapitre B8. Espaces vectoriels IT. Sous-espaces vectoriels

Remarques.

+ Les sous-espaces vectoriels de R? sont {Og:}, les droites passant par Ogz = (0,0) et R?
tout entier.

+ Les sous-espaces vectoriels de R? sont {Ogs}, les droites passant par Ogs = (0,0, 0), les
plans contenant Ogs, et R? tout entier.

Exemple 1. R, [X] est un sous-espace vectoriel de R[X].

Exemple 2. (GO(IR, R), 'ensemble des fonctions continues de R dans R, est un sous-espace
vectoriel de #(R, R). De méme pour 6", 6, etc.

Exercices 1, 2, 3.

B. Intersection de sous-espaces vectoriels

/_[ Proposition ]

Soit (F});e; une famille de sous-espaces vectoriels d'un espace vectoriel E.

Alors N F; est un sous-espace vectoriel de E.
i€l

.

Démonstration.
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Chapitre B8. Espaces vectoriels I1. Sous-espaces vectoriels

C. Sous-espace vectoriel engendré par une famille finie de vec-
teurs

_ | Définition

Soit E' un K-espace vectoriel, et F = (uy, ..., u,) une famille de vecteurs de E.

On note Vect (¥) 'ensemble des combinaisons linéaires d’éléments de & :

/_( Proposition ]

L’ensemble Vect (F) est un sous-espace vectoriel de F.

| Définition
Si F est une famille de vecteurs d’un espace vectoriel £ alors ’ensemble Vect (F) est
appelé sous-espace vectoriel de E engendré par %.

Exemples.
e Dans F =R?:

F = Vect (u) est

G = Vect (u,v) est

e Dans F = K[X] :

Vect (1, X) = Vect (1) = Ko[X] =

e Dans E = My(K), soit :

10 01 00 00
Ellz(o O) E12:<0 0) E21:(1 O) E22:(0 1)

Alors :
Vect <E117 Egz) = VECt (Eu, _Elg, Egg) =
Vect (E117 E217 ljgg = Vect (EL1> <E127 E217 EQZ) T

8 B. Gonard



Chapitre B8. Espaces vectoriels

IT. Sous-espaces vectoriels

Démonstration de

la

roposition

toriel possible :

Remarque. L’espa;

ce vectoriel engendr

[N

par

I’ensemble vide est le plus p

etit espace

vec-

Vect

Exercice 4.

Exemple 3. Soit

E=NR?

uw=(1,3,1)

Quel est le sous-espace vectoriel F' de E engendré par u, v, et w?

v=(—1,-1,0)

w = (0,4,2).

Remarques. Soit & et ¢ deux familles finies de vecteurs de E et w un vecteur de E.

m
P

e Si w /ec

t(

F)

alo1

s V

ect

(F U

{u

=

» Si

¥
N

4

alo1

s | Vi

ect

(F)
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Chapitre B8. Espaces vectoriels I1. Sous-espaces vectoriels

Propositions ]

Soit & une famille finie de vecteurs de E. Alors :
(i) Vect (F) est le plus petit sous-espace vectoriel de £ contenant F.

(7i) Vect (¥) est l'intersection de tous les sous-espaces vectoriels de F contenant %.

Remarque. Le point () signifie : Soit ¥ une famille finie de vecteurs de F et G un
sous-espace vectoriel de E. Alors :

Démonstration. (77) Soit F' I'intersection des sous-espaces vectoriels de E contenant % :

F= N ¢
Gsevde E
FCG

Comme Vect (¥) est un sous-espace vectoriel de E contenant F, alors F' C Vect (F).

Pour démontrer l'inclusion réciproque, choisissons un élément u de Vect (F) :
U= AUy + -+ AUy

ou les \; sont des scalaires et les u; appartiennent a F.

Les u; appartiennent alors a tous les sous-espaces vectoriels G de E contenant %. Comme
ceux-ci sont des sous-espaces vectoriels, ils sont stables par combinaison linéaire et donc
contiennent tous u. Ainsi u est élément de F'.

On en déduit que Vect (¥) C F, puis par double inclusion F' = Vect (¥).

(1) Nous savons que Vect (¥) est un sous-espace vectoriel contenant ¥. D’apres ce qui
précede, si G est un autre sous-espace vectoriel de F contenant ¥ alors Vect (¥) C G, car
Vect (F) est 'intersection de tous les tels sous-espaces vectoriels.

Ceci signifie que Vect (F) est le plus petit sous-espace vectoriel de E' contenant . 0

D. Sommes de sous-espaces vectoriels

Remarque. En général F'U G n’est pas un sous-espace vectoriel de E, comme le montre
I'exemple de deux droites non confondues de RR?.

_ | Notation

Soit F' et G deux sous-espaces vectoriels de F.

On note F' + G 'ensemble des sommes d’un élément de F' et d’un élément de G :
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Chapitre B8. Espaces vectoriels 1. Sous-espaces vectoriels

ﬁ[ Proposition ]

Si F' et G sont des sous-espaces vectoriels de E alors F'+ G est un sous-espace vectoriel
de E.

~

v

_ | Définition N

Le sous-espace vectoriel F'+ G de E est appelé somme de F et de G.

Démonstration.

(1) Si F' et G sont inclus dans E, alors tout élément u de F' et tout élément v de G est
élément de E. Comme celui-ci est stable par addition, car c¢’est un espace vectoriel,
alors v + v € E. Ceci montre l'inclusion '+ G C E.

(i1) Comme F' et G sont des sous-espaces vectoriels de E alors ils contiennent Op. Or
0g =0g + 0g, donc Og € I+ G.

(iii) Soit w; et wy deux éléments de F'+ G et \ un scalaire. Alors il existe (uy,us) € F? et
(v1,v9) € G? tels que wy = uy + v1 et wy = uy + vy. Par les propriétés des opérations
sur les espaces vectoriels :

)\wl —+ wy = )\(Ul + 1)1) + (UQ + Ug) = ()\Ul -+ Ug) + ()\Ul + UQ)

Comme F' est un sous-espace vectoriel alors Au; + us € F, comme G est un sous-
espace vectoriel alors A\v; + vy € G, donc AMw; +wy € F' + G. Ainsi F + G est stable
par combinaisons linéaires.

Finalement, F'+ GG est un sous-espace vectoriel de E. O

Remarques.

e Lasomme FF+G contient Fet G: FCF+G et GCFH+G.

» Pour tout sous-espace vectoriel F' de F :

F+{0g} = F+FE= F+F=

Exercice 5.

Exemple 4. Soit £ = R?, 4; = (1,1,0), dy = (0,2,1), F' = Vect (d;) et G = Vect ().
Donner une équation de F' + G.

Remarque. Si F et 9 sont deux familles de vecteurs de E alors :

Vect (F) + Vect (4) =

B. Gonard 11



Chapitre B8. Espaces vectoriels I1. Sous-espaces vectoriels

E. Somme directe

_ | Définition

Soit F' et G deux sous-espaces vectoriels d’un espace vectoriel F.

On dit que F' et G sont en somme directe ou que la somme F + G est directe si tout
élément de F'+ (G s’écrit de maniere unique comme somme d’un élément de F' et d’un
élément de G.

o
/_[ Proposition ]

Les sous-espaces vectoriels F' et G de F sont en somme directe si et seulement si
FNnG={0g}.

~

Démonstration.

> Exercice 6.
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Chapitre B8. Espaces vectoriels 1. Sous-espaces vectoriels

F. Supplémentaires

| Définition
Deux sous-espaces vectoriels F' et G d’un espace vectoriel E sont dits supplémentaires

si tout élément de E s’écrit de fagcon unique comme somme d’un élément de F' et d'un
élément de G :

Exemple 5. Soit
E=R? F={(2,0) | z € R} = Vect (?) G={(0,y)| ye R} = Vect (}).

Alors F' et G sont supplémentaires.

Notation

Si F' et GG sont supplémentaires alors on note :

Exemple 6. Soit £ = R3 puis
F={(@,5.0) | (@y) € R} = Vect (i.7) G ={(0,5,2) | (4.2) € R} = Vet (1. F).
Alors E = F' 4+ (G mais cette somme n’est pas directe.

_ | Théoréme N

Deux sous-espaces vectoriels F' et G de E sont supplémentaires si et seulement si

Démonstration. Tout découle des deux parties précédentes. [l
Remarques.
e Il est possible d’avoir £ = FF & G = F' & H avec G et H différents.

Dans ce cas GG est un supplémentaire de F', et H en est un autre.

Pour cette raison il est incorrect d’écrire le supplémentaire de F', il faut écrire un
supplémentaire de F'.

e Dans tous les cas : £ = F @ {0g}.

e Il ne faut pas confondre supplémentaire et complémentaire.
En effet le complémentaire d’un sous-espace vectoriel n’est jamais un sous-espace vec-
toriel, car il ne contient pas Og.

Exercice 7.
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I11. Familles de vecteurs

Dans toute cette partie E désigne un espace vectoriel sur K.

A. Familles génératrices

Définition
Soit F = (uy,...,u,) une famille de vecteurs de E.
On dit que la famille &F est génératrice de E si E = Vect ().

Exemple 7. Parmi les familles suivantes de vecteurs de R? :
F1=((1,0,0),(0,1,0)) F2=((1,0,0),(0,1,0),(2,0,0))
F3=((1,0,0),(0,1,0),(0,1,1)) F4+=((1,0,0),(0,1,0),(0,0,0))
Fs = ((1,0,0),(0,1,0),(2,0,0), (0,0, 1))

Celles qui sont génératrices de R? sont

Proposition ]

Si (u1,...,u,) est génératrice de E et si u, est combinaison linéaire des vecteurs
Uy, ..., Uy alors la famille (uy,...,u,—1) est génératrice de E.
Démonstration. Comme u,, est combinaison linéaire des vecteurs uy, . .., u,_; alors il existe

des scalaires o, ..., tels que :
Up = QU1 + -+ Op_1Up—1

Comme la famille (uy,...,u,) est génératrice de E alors pour tout u de E' il existe des
scalaires Aq,..., A, tels que :
U= AUy + -+ A,

Ceci donne :
u = ()\1 + )\pal)ul + -+ (>\p—1 + )\pap_l)up_l

Ainsi tout vecteur v de E est combinaison linéaire des vecteurs uy, ..., u,—1 et donc que
la famille (uy,...,u,—1) est génératrice de E. O

Proposition ]

Soit F et 9§ deux familles de vecteurs de E telles que & C 4.
Si F est génératrice de F alors 9 est génératrice de F.

Démonstration. En effet, si & C ¢ alors Vect (¥) C Vect (9).

Donc si E = Vect (¥) alors E C Vect (9) C E, donc E = Vect (9) et 4 est génératrice
de FE. O
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Chapitre B8. Espaces vectoriels III. Familles de vecteurs

Exemple 8. Donner une famille génératrice de :
o« F={(z,y) e R?*| 3z +2y =0}
« G={(z,y,2) ER?| 22 — by + 42 =0}

Exercice 8.
ﬁ( Proposition ]

Soit F' un sous-espace vectoriel de E, et ¥ un famille génératrice de F'. Alors F' est
invariant par opérations élémentaires sur les vecteurs de .

Plus précisément, si F = (uq, ..., u,) alors :

o Pour tout (i,5) € {1,...,p}  aveci#jet a € K :

F = Vect (u1, ..., %1, U + QUj, Uit1, - .., Up)
e Pour tout i € {1,...,p} et A € K*:
F = Vect (ug, ..., U1, \j, Uig1, - .., Up)
e Pour tout (i,5) € {1,...,p}" aveci < j :

F = Vect(ug, ..., uj, ..., Ui ...,Up)
(@) )

Démonstration. Soit ¥’ la famille obtenue par opération élémentaire sur les élément de
F, et F' = Vect (97')

On vérifie que F' C Vect (F) et F C Vect (@')
Par propriété ceci implique F' C F' et FF C F’, donc F = F'. O

Proposition ]

Soit F' et G deux sous-espaces vectoriels de £. Si F est une famille génératrice de F et
%4 est une famille génératrice de GG, alors F U 9 est une famille génératrice de F'+ G.

Démonstration. On note & = (uy,...,u,) et 4 = (vy,...,v,). Comme F est une famille
génératrice de F' et 9 est une famille génératrice de G alors

F={ u+ -+XMu| (M,...,\) € KP}
et G={vr+ - +pvg| (a,..., 1y € K}
Par définition : F+ G ={u+v | (u,v) € F x G}
Donc F'+ G = { \jug + -+ 4+ XNy + pav1 + -+ pigug | (Aiso s M, i, -0, pg) € KPT9}

= Vect (uy, ..., Up,v1,...,0,)
= Vect (¥ UY)
Ceci montre bien que la famille & U 9 est génératrice de F + G. U
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B. Familles libres

ﬁ( Définitions ]

Soit F = (uy,...,u,) une famille de vecteurs de E.

On dit que la famille & est libre si :

Dans ce cas on dit aussi que les vecteurs uy, ..., u, sont linéairement indépendants.

Si la famille & n’est pas libre, on dit qu’elle est liée, ou que les vecteurs uy, . .., u, sont
linéairement dépendants.

/_[ Proposition j

Une famille est liée si et seulement si un de ses vecteurs est combinaison linéaire des
autres.

Démonstration.

Exemple 7 (suite).

Parmi les familles #; a &5 celles qui sont libres sont,

Exemple 9. La famille ¥ = ((1,1,0),(1,0,1), (0,1,1)) est-elle libre ?

> Exercices 9, 10.
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Chapitre B8. Espaces vectoriels III. Familles de vecteurs

ﬁ[ Proposition ]

N
Soit Uy, ..., up+1 des vecteurs de E.
(1) Si la famille (uq, ..., uy+1) est libre alors la famille (uq, ..., u,) est libre.
(71) Si la famille (uy,...,u,) est liée alors la famille (uy, ..., u,41) est liée.
(777) Si la famille (uy, ..., u,) est libre alors la famille (uy, ..., uy1) est liée si et seule-
ment si u,y; est combinaison linéaire de uy, .. ., u,.

Démonstration. La propriété (i) est conséquence de la propriété précédente, la propriété
(1) est la contraposée de la propriété (ii).

Démontrons la propriété (7).
Supposons que la famille (uy,...,u,) est libre et que la famille (uy, ..., up1) est liée.
Alors il existe (/\1, ceey )‘p—l-l) S Kp+t \ {O]Kp+1} tel que /\1U1 + -+ )\p+1up+1 = OE

Si App1 = 0 alors Ajuy + -+ -+ Ayu, = O, ce qui implique Ay = -+ = A, = 0 car la famille
(u1,...,up) est libre. Mais la famille (Ay,...,\,41) est supposée non-nulle, donc on ne
peut avoir A\,y; = 0.

p

Ainsi A1 # 0, donc upq = Z(—ﬁ)ul, i.e., Upy1 est combinaison linéaire de uy, . . ., uy.
i=1

Réciproquement, si la famille (uy,...,u,) est libre et u,.; est combinaison linéaire de

Ui, ..., up, alors la famille (uq, ..., uy11) est liée d’apres la proposition précédente. [l

ﬁ[ Proposition ]

e [a famille vide est libre.

e Soit u un vecteur de E. Alors la famille (u) est libre si et seulement si u est non-nul.
¢ Soit u et v deux vecteurs de E. La famille (u, v) est libre si et seulement si aucun
des deux vecteurs n’est colinéaire a 'autre.
En d’autres termes, la famille (u,v) est liée sl existe A € K tel que v = Av ou s’il
existe A € K tel que v = Au.

Exemple 10. Soit £ = R, et fi, fa, f5 les trois vecteurs de E définis par :
VeeR  fi(x) =cosx fa(x) =sinx f3(z) = cos <x + g)

Alors la famille (fy, f2) est libre.

Exercice 11.

Proposition ]

Une famille de polyndémes non-nuls de degrés distincts est libre. }

Démonstration. Soit (P;);—¢.., une famille de polynémes non-nuls de degrés distincts.

Quitte a permuter les polynémes P; on peut supposer qu’ils sont de degrés strictement
croissants.
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Soit (A;)i=o,...» une famille de scalaires telle que : > N\ P; = Okx]

i=0
Supposons que cette famille n’est pas la famille nulle. Il existe alors un indice m maximal
tel que A, est non-nul, et donc :

m m— )\

> NP = Ok puis -3 I P;

i=0 =0
Comme la famille (Fp,...,P,) est de degrés strictement croissants alors les degrés de
B, ..., P,_1 sont strictement inférieurs a celui de P,, donc :

m—1 by
deg <—Z/\ZPZ) <max{degP; | i=0...m—1} <deghF,,

=0

Ceci est une contradiction, donc la famille (\;);—o.. ., est nulle, et ainsi la famille (P;)oci<n

est libre. O
| Définition
Une famille (Fp,...,P,) de polynémes est dite de degrés échelonnés si la suite

(deg P;)i=o..n est strictement croissante.

_ | Corollaire

Une famille de polynémes non-nuls de degrés échelonnés est libre.

C. Bases

Définition

Soit F = (uy,...,u,) une famille de vecteurs de E.

On dit que la famille F est une base de F si elle est libre et génératrice.

Exemple 7 (suite).

Parmi les familles &, a %5 les bases sont

_| Théoréme

Soit % = (uy, ..., u,) une base de £ et u un vecteur de FE.
Alors il existe un unique n-uplet (A1,...,\,) de scalaires tel que :

U= AU+ -+ Aup,

_ | Définition

On appelle coordonnées de u dans la base % ce n-uplet.

18 B. Gonard



Chapitre B8. Espaces vectoriels III. Familles de vecteurs

Démonstration.

/_[ Proposition ]

Soit B = (u,...,u,) une famille de vecteurs de E. Si pour tout u € E il existe un
unique n-uplet (Aq,...,\,) de scalaires tel que u = \juy + - - - + A\u, alors A est une
base de FE.

.

Démonstration. La famille %8 est génératrice car tout vecteur de E est combinaison linéaire
de ses vecteurs.

Démontrons qu’elle est libre. Soit (A1,...,\,) un n-uplet de scalaires tel que :
AMuy + -+ Au, =0g

Par hypothese Og s’écrit de fagon unique comme combinaison linéaire des u;. Or :
Ogui + -+ 4+ Ogu, = 0g

Par unicité on obtient :

Ceci montre que la famille 98 est libre.

La famille %8 est libre et génératrice de ' donc c’est une base de F. U
Exemple 11. Dans E = R? on pose :

%, =((1,0,0),(0,1,0),(0,0,1)) By =((1,0,0),(1,1,0),(1,1,1))  u=(9,3,7)
Alors les deux familles 9%, et %8, sont des bases de E.

Quelles sont les coordonnées de u dans ces bases ?

Exercice 12.
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D. Base canonique

| Définition
Soit £ = K™. Pour ¢ = 1,...,n on note ¢; le vecteur ne contenant que des 0 sauf un 1
en i-éme position :

Alors la famille B, = (eq, ..., e,) est une base de K", appelée base canonique de K.

Les coordonnées du vecteur v = (ay, ..., a,) dans cette base sont (ay, ..., a,).

_ | Définition

Soit £ = K,,[X], o n € N. Alors la famille

est une base de F, appelée base canonique de K, [X].

Les coordonnées du polynome ZakX * dans cette base sont (ag, ..., a,).

k=0
_ | Définition

Soit E = M,,(K). On note E;; la matrice ne contenant que des zéros, sauf un 1 en
position (i, j).

La famille (E;; |1 <7< n,1<j<p) est une base de E, appelée base canonique de
M (K).

Exemple. La base canonique de Mo(R) est (E11, Eia, Eo1, Eos).

/(A
Les coordonnées de A = (

w O

) dans cette base sont

[

Remarque. Les espaces vectoriels RN et R® n’ont pas de base canonique.

> Exercices 13, 14.
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E. Dimension

_ | Définition

Un espace vectoriel est dit de dimension finie s’il admet une famille génératrice finie.

_ | Théoréme

e Si un espace vectoriel est de dimension finie alors il admet une base.

J

e Dans ce cas toutes ses bases ont le méme cardinal.

Définition
On appelle dimension de E et on note dim £ le cardinal de ses bases. }

Remarque. La démonstration et la suite au chapitre B10 : dimension.

Exemple 12. Les espaces vectoriels K", K, [X] et M,,(K) sont de dimensions finies, et :

dim K" = dim K,,[X] = dim AM,,,(K) =

F. Extension aux familles infinies

On note toujours £ un espace vectoriel sur K.

Définition

Soit & une partie de E. Une combinaison linéaire d’éléments de & est une combinaison
linéaire d’un nombre fini d’éléments de &.

Exemple. Tout polynéme de IK[X]| est combinaison linéaire d’éléments de {X k ‘ ke ]N}.

_ | Définition

Soit & une partie de E.

On note Vect (&) 'ensemble des combinaisons linéaires d’éléments de &.

ﬁ[ Proposition ]

Pour toute partie & de E I'ensemble Vect (&) est un sous-espace vectoriel de E.

Démonstration. La démonstration est identique au cas ou la partie & est finie. On remarque
que la somme de deux combinaisons linéaires d’éléments de € est une combinaison linéaire
d’éléments de &, car I'union de deux ensembles finis est un ensemble fini. O
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Remarque.

e Comme pour le cas fini, Vect (&) est le plus petit sous-espace vectoriel de E' contenant
&, et 'intersection de tous les sous-espaces vectoriels de E contenant &.

» Soit F' un sous-espace vectoriel de E. On dit que € est une partie génératrice de F si
F = Vect (8).

_ | Notation

Soit I un ensemble infini.

+ On note K’ I'ensemble des familles de scalaires indexées par I :
K'={(\)ies | Viel X\ €K}

e On note KU l'ensemble des familles presque nulles de scalaires indexées par I,
c’est-a-dire des familles dont tous les termes sont nuls sauf un nombre fini d’entre
eux.

Remarque. Si A = ()\;);c; est une famille de K’ alors le support de X est I'ensemble des
indices ¢ pour lesquels \; est non-nul. C’est une partie de I.

Ainsi les familles presque nulles sont les familles & support fini.
Exemples.

e Dans le cas ou I = IN : une suite (\,)men est presque nulle si et seulement si elle est
nulle a partir d’un certain rang.

¢ On peut définir 'ensemble IK[X] par :

K[X] = { > apX*

kelN

(ar)ken € ]K(]N)}

Définition

Soit & une partie de £

* On dit que 6 est libre si toute famille finie d’éléments de & est libre.

e On dit que & est liée si elle n’est pas libre, ce qui signifie qu’il existe une famille finie
d’éléments de & linéairement dépendants.

Exemple 13. Pour tout a € R on pose f,(z) = a”.
Démontrer que la famille ¢ = { f, | a € R%} est une famille libre de F(R, R).

Remarque. Comme dans le cas fini, une base de E est une famille & = (e;);cs libre et
génératrice de F.

Dans le cas ou [ est infini, tout vecteur s’écrit de fagon unique comme combinaison linéaire
d’éléments de cette famille, ce qui donne en terme de familles presque nulles :

Yue FE EI'()\z)zeI S KO U = Z)\zez
iel
Les A; sont toujours appelés coordonnées de u dans la base &.

Exemple. La famille {X k ‘ ke ]N} est une base de K[X], appelée base canonique de
K[X].
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