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Chapitre B8
Espaces vectoriels

Dans tout ce chapitre, K désigne R ou C. On appelle scalaires ses éléments.

I. Espaces vectoriels

A. Définitions

Définitions
Un espace vectoriel sur K ou K-espace vectoriel est un ensemble E dont les éléments
sont appelés vecteurs, muni de deux opérations

+ : E × E −→ E
(u, v) 7−→ u + v

et · : K× E −→ E
(λ, u) 7−→ λu

appelées addition et multiplication par un scalaire, satisfaisant les propriétés :

• L’addition est commutative : ∀(u, v) ∈ E2 u + v = v + u

• L’addition est associative : ∀(u, v, w) ∈ E3 (u + v) + w = u + (v + w)
• Il existe un vecteur de E noté 0E et appelé vecteur nul, tel que :

∀u ∈ E u + 0E = 0E + u = u

• Tout vecteur u de E possède un opposé noté −u, satisfaisant :
u + (−u) = (−u) + u = 0E

On note v − u au lieu de v + (−u).

La multiplication par un scalaire vérifie :

• ∀(λ, µ) ∈ K2 ∀u ∈ E (λµ)u = λ(µu)
• ∀(λ, µ) ∈ K2 ∀u ∈ E (λ + µ)u = λu + µu

• ∀λ ∈ K ∀(u, v) ∈ E2 λ(u + v) = λu + λv

• ∀u ∈ E 1Ku = u

Remarques.
• L’addition est une loi de composition interne alors que la multiplication par un scalaire

est une loi de composition externe.
• Les quatre premiers points signifient que (E, +) est un groupe abélien.

Ainsi un espace vectoriel est un triplet (E, +, ·) où (E, +) est un groupe abélien et ·
est une loi vérifiant les propriétés ci-dessus.
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Propositions

Pour tout (u, v) ∈ E2 et tout (λ, µ) ∈ K2 :
(i) 0Ku = 0E

(ii) λ0E = 0E

(iii) (−1K)u = −u

(iv) (λ − µ)u = λu − µu

(v) λ(u − v) = λu − λv

Démonstrations.

Proposition
Soit u ∈ E et λ ∈ K. Alors :

λu = 0E ⇐⇒ (λ = 0K ou u = 0E)

Démonstration.
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B. Espaces vectoriels de référence
• Espace vectoriel des n-uplets à coefficients dans K

Kn = {(x1, . . . , xn) | ∀i = 1, . . . , n xi ∈ K} (n ∈ N)

Si x = (x1, . . . , xn) y = (y1, . . . , yn) et λ ∈ K alors :

x + y = (x1 + y1, . . . , xn + yn) et λx = (λx1, . . . , λxn)

Opposé : −x = (−x1, . . . , −xn) Vecteur nul : 0Kn = (0, . . . , 0)

Exemples. R2 R3 mais aussi K1 = K K0 = {0}
• Espace vectoriel des matrices de taille (n, p) à coefficients dans K

Mnp(K) (n, p ∈ N∗)

Si A = (aij) 1⩽i⩽n
1⩽j⩽p

B = (bij) 1⩽i⩽n
1⩽j⩽p

et λ ∈ K alors :

A + B = (aij + bij) 1⩽i⩽n
1⩽j⩽p

et λA = (λaij) 1⩽i⩽n
1⩽j⩽p

Opposé : −A = (−aij) 1⩽i⩽n
1⩽j⩽p

Vecteur nul : 0Mnp(K) = 0np = (0) 1⩽i⩽n
1⩽j⩽p

• Espace vectoriel des polynômes à coefficients dans K

K[X]

Si P =
+∞∑
k=0

akXk Q =
+∞∑
k=0

bkXk et λ ∈ K alors :

P + Q =
+∞∑
k=0

(ak + bk)Xk et λP =
+∞∑
k=0

λakXk

Opposé : −P =
+∞∑
k=0

−akXk Vecteur nul : 0K[X] =
+∞∑
k=0

0KXk = 0K

• Espace vectoriel des applications de Ω dans K, où Ω est un ensemble non-vide

KΩ ou F(Ω,K)

Si f et g sont deux applications de Ω dans K et λ ∈ K alors on définit :

f + g : Ω −→ K

x 7−→ f(x) + g(x)
et λf : Ω −→ K

x 7−→ λ f(x)

En d’autres termes :

∀x ∈ Ω (f + g)(x) = f(x) + g(x) et (λf)(x) = λ(f(x))

Opposé : −f est l’application x 7→ −f(x) Vecteur nul : 0KΩ est l’application x 7→ 0K
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Exemples.
- RR est l’espace vectoriel des applications de R dans R, aussi noté F(R,R).
- RN est l’espace vectoriel des suites indexées par N à valeurs dans R, avec :

(un)n∈N + (vn)n∈N = (un + vn)n∈N et λ(un)n∈N = (λun)n∈N

- RΩ avec Ω = {1, . . . , n} est naturellement identifié à l’espace vectoriel Rn.

• Produit cartésien de deux K-espaces vectoriels :
Soit E et F deux K-espaces vectoriels. Le produit cartésien des ensembles E et F est :

E × F = {(x, y) | x ∈ E et y ∈ F}

Il est un K-espace vectoriel si on le munit des opérations suivantes :
Pour tous (x, y), (x′, y′) éléments de E × F et λ scalaire on pose :

(x, y) + (x′, y′) = (x + x′, y + y′) et λ(x, y) = (λx, λy)

Opposé : −(x, y) = (−x, −y) Vecteur nul : 0E×F = (0E, 0F )

• Produit cartésien de n espaces vectoriels :
Plus généralement, si (Ei)i=1,...,n est une famille d’espaces vectoriels sur K, alors

E1 × · · · × En =
n∏

i=1
Ei

est un K-espace vectoriel, muni des opérations évidentes d’addition et de multiplication
par un scalaire termes à termes.

Définition (Hors programme)
Une algèbre sur K, ou K-algèbre est un ensemble A munit de deux lois de composition
internes + et × et d’une loi de composition externe · tels que
• (A, +, ·) est un espace vectoriel
• (A, +, ×) est un anneau
• Pour tous u, v dans A et λ dans K : λ(u × v) = (λu) × v = u × (λv).

Exemples. F(R,R) RN K[X] Mn(K) sont des algèbres.
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II. Sous-espaces vectoriels

A. Définition et exemples

Définition
Soit E un espace vectoriel sur K. Un sous-espace vectoriel de E est une partie F de
E non-vide, stable par addition et par multiplication par un scalaire, i.e., telle que :

∀(u, v) ∈ F 2 u + v ∈ F

∀u ∈ F ∀λ ∈ K λu ∈ F

Proposition (Caractérisation des sous-espaces vectoriels)
Un ensemble F est un sous-espace vectoriel de E si et seulement si :
(i) F ⊆ E

(ii) 0E ∈ F

(iii) ∀(u, v) ∈ F 2 ∀λ ∈ K λu + v ∈ F

Démonstration. Si F est une partie non-vide de E alors elle contient un vecteur u. Comme
0K ∈ K alors 0Ku ∈ F , donc 0E ∈ F .
Le reste se démontre facilement. □

Remarque. Pour démontrer qu’un ensemble F est un sous-espace vectoriel de E on utilise
la caractérisation plutôt que la définition.

Proposition

Si F est un sous-espace vectoriel de E alors F est un espace vectoriel.

Démonstration. L’ensemble F est stable par les lois d’addition et de multiplication par
un scalaire de E, ce qui permet de définir les lois induites :

+ : F × F → F et · : K× F → F

Comme elles vérifient les axiomes de définition d’un espace vectoriel dans E alors elles
vérifient aussi ces lois dans F . □

Remarque. Pour démontrer qu’un ensemble E est un espace vectoriel, il est souvent
plus facile de vérifier qu’il est un sous-espace vectoriel d’un espace vectoriel de référence,
comme Rn, F(I,R), RN ou R[X].

Définition
Soit u1, u2, . . . , un des éléments de E et λ1, λ2, . . . , λn des scalaires. Alors le vecteur

λ1u1 + λ2u2 + · · · + λnun

est appelé combinaison linéaire des vecteurs u1, u2, . . . , un.
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Remarques.
• Une combinaison linéaire de plusieurs vecteurs d’un espace vectoriel est élément de cet

espace vectoriel, car un sous-espace vectoriel est stable par addition et multiplication
par un scalaire.

• Un sous-espace vectoriel de E est une partie non-vide de E stable par combinaisons
linéaires.

• Quel que soit l’espace vectoriel E, les ensembles {0E} et E sont deux sous-espaces
vectoriels de E.

Exemples géométriques.
• Soit u⃗ un vecteur non-nul de R2. L’ensemble des combinaisons linéaires de u⃗ est l’en-

semble :
{λu⃗ | λ ∈ R}

Il s’agit de la droite passant par l’origine, de vecteur directeur u⃗.
C’est un sous-espace vectoriel de R2.

• Soit u⃗ et v⃗ deux vecteurs de R3. L’ensemble des combinaisons linéaires de u⃗ et v⃗ est
l’ensemble {

λu⃗ + µv⃗ | (λ, µ) ∈ R2}
Si u⃗ et v⃗ ne sont pas colinéaires alors il s’agit du plan contenant l’origine, dirigé par
les vecteurs u⃗ et v⃗.
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Remarques.
• Les sous-espaces vectoriels de R2 sont {0R2}, les droites passant par 0R2 = (0, 0) et R2

tout entier.
• Les sous-espaces vectoriels de R3 sont {0R3}, les droites passant par 0R3 = (0, 0, 0), les

plans contenant 0R3 , et R3 tout entier.
Exemple 1. Rn[X] est un sous-espace vectoriel de R[X].
Exemple 2. C0(R,R), l’ensemble des fonctions continues de R dans R, est un sous-espace
vectoriel de F(R,R). De même pour Cn, C∞, etc.

▶▷ Exercices 1, 2, 3.

B. Intersection de sous-espaces vectoriels

Proposition
Soit (Fi)i∈I une famille de sous-espaces vectoriels d’un espace vectoriel E.
Alors ⋂

i∈I
Fi est un sous-espace vectoriel de E.

Démonstration.
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C. Sous-espace vectoriel engendré par une famille finie de vec-
teurs

Définition
Soit E un K-espace vectoriel, et F = (u1, . . . , un) une famille de vecteurs de E.
On note Vect (F) l’ensemble des combinaisons linéaires d’éléments de F :

Proposition

L’ensemble Vect (F) est un sous-espace vectoriel de E.

Définition
Si F est une famille de vecteurs d’un espace vectoriel E alors l’ensemble Vect (F) est
appelé sous-espace vectoriel de E engendré par F.

Exemples.
• Dans E = R2 :

F = Vect (u) est

G = Vect (u, v) est

• Dans E = K[X] :

Vect (1, X) = Vect (1) = K2[X] =

• Dans E = M2(K), soit :

E11 =
Å

1 0
0 0

ã
E12 =

Å
0 1
0 0

ã
E21 =

Å
0 0
1 0

ã
E22 =

Å
0 0
0 1

ã
Alors :

Vect (E11, E22) = Vect (E11, E12, E22) =

Vect (E11, E21, E22) = Vect (E11, E12, E21, E22) =
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Démonstration de la proposition.

Remarque. L’espace vectoriel engendré par l’ensemble vide est le plus petit espace vec-
toriel possible :

Vect (∅) =

▶▷ Exercice 4.
Exemple 3. Soit E = R3 u = (1, 3, 1) v = (−1, −1, 0) w = (0, 4, 2).
Quel est le sous-espace vectoriel F de E engendré par u, v, et w ?
Remarques. Soit F et G deux familles finies de vecteurs de E et w un vecteur de E.

• Si w ∈ Vect (F) alors Vect (F∪ {w}) =

• Si F ⊆ G alors Vect (F)
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Propositions
Soit F une famille finie de vecteurs de E. Alors :
(i) Vect (F) est le plus petit sous-espace vectoriel de E contenant F.

(ii) Vect (F) est l’intersection de tous les sous-espaces vectoriels de E contenant F.

Remarque. Le point (i) signifie : Soit F une famille finie de vecteurs de E et G un
sous-espace vectoriel de E. Alors :

Démonstration. (ii) Soit F l’intersection des sous-espaces vectoriels de E contenant F :

F =
⋂

G sev de E
F⊆G

G

Comme Vect (F) est un sous-espace vectoriel de E contenant F, alors F ⊆ Vect (F).
Pour démontrer l’inclusion réciproque, choisissons un élément u de Vect (F) :

u = λ1u1 + · · · + λnun

où les λi sont des scalaires et les ui appartiennent à F.
Les ui appartiennent alors à tous les sous-espaces vectoriels G de E contenant F. Comme
ceux-ci sont des sous-espaces vectoriels, ils sont stables par combinaison linéaire et donc
contiennent tous u. Ainsi u est élément de F .
On en déduit que Vect (F) ⊆ F , puis par double inclusion F = Vect (F).
(i) Nous savons que Vect (F) est un sous-espace vectoriel contenant F. D’après ce qui
précède, si G est un autre sous-espace vectoriel de E contenant F alors Vect (F) ⊂ G, car
Vect (F) est l’intersection de tous les tels sous-espaces vectoriels.
Ceci signifie que Vect (F) est le plus petit sous-espace vectoriel de E contenant F. □

D. Sommes de sous-espaces vectoriels
Remarque. En général F ∪ G n’est pas un sous-espace vectoriel de E, comme le montre
l’exemple de deux droites non confondues de R2.

Notation
Soit F et G deux sous-espaces vectoriels de E.
On note F + G l’ensemble des sommes d’un élément de F et d’un élément de G :
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Proposition
Si F et G sont des sous-espaces vectoriels de E alors F +G est un sous-espace vectoriel
de E.

Définition
Le sous-espace vectoriel F + G de E est appelé somme de F et de G.

Démonstration.
(i) Si F et G sont inclus dans E, alors tout élément u de F et tout élément v de G est

élément de E. Comme celui-ci est stable par addition, car c’est un espace vectoriel,
alors u + v ∈ E. Ceci montre l’inclusion F + G ⊆ E.

(ii) Comme F et G sont des sous-espaces vectoriels de E alors ils contiennent 0E. Or
0E = 0E + 0E, donc 0E ∈ F + G.

(iii) Soit w1 et w2 deux éléments de F + G et λ un scalaire. Alors il existe (u1, u2) ∈ F 2 et
(v1, v2) ∈ G2 tels que w1 = u1 + v1 et w2 = u2 + v2. Par les propriétés des opérations
sur les espaces vectoriels :

λw1 + w2 = λ(u1 + v1) + (u2 + v2) = (λu1 + u2) + (λv1 + v2)

Comme F est un sous-espace vectoriel alors λu1 + u2 ∈ F , comme G est un sous-
espace vectoriel alors λv1 + v2 ∈ G, donc λw1 + w2 ∈ F + G. Ainsi F + G est stable
par combinaisons linéaires.

Finalement, F + G est un sous-espace vectoriel de E. □

Remarques.
• La somme F + G contient F et G : F ⊆ F + G et G ⊆ F + G.
• Pour tout sous-espace vectoriel F de E :

F + {0E} = F + E = F + F =

▶▷ Exercice 5.
Exemple 4. Soit E = R3, u⃗1 = (1, 1, 0), u⃗2 = (0, 2, 1), F = Vect (u⃗1) et G = Vect (u⃗2).
Donner une équation de F + G.
Remarque. Si F et G sont deux familles de vecteurs de E alors :

Vect (F) + Vect ( G) =
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E. Somme directe

Définition
Soit F et G deux sous-espaces vectoriels d’un espace vectoriel E.
On dit que F et G sont en somme directe ou que la somme F + G est directe si tout
élément de F + G s’écrit de manière unique comme somme d’un élément de F et d’un
élément de G.

Proposition
Les sous-espaces vectoriels F et G de E sont en somme directe si et seulement si
F ∩ G = {0E}.

Démonstration.

▶▷ Exercice 6.
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F. Supplémentaires

Définition
Deux sous-espaces vectoriels F et G d’un espace vectoriel E sont dits supplémentaires
si tout élément de E s’écrit de façon unique comme somme d’un élément de F et d’un
élément de G :

Exemple 5. Soit
E = R2 F = {(x, 0) | x ∈ R} = Vect (⃗ı) G = {(0, y) | y ∈ R} = Vect (ȷ⃗) .

Alors F et G sont supplémentaires.

Notation
Si F et G sont supplémentaires alors on note :

Exemple 6. Soit E = R3 puis

F =
{

(x, y, 0) | (x, y) ∈ R2} = Vect (⃗ı, ȷ⃗) G =
{

(0, y, z) | (y, z) ∈ R2} = Vect
Ä
ȷ⃗, k⃗
ä

.

Alors E = F + G mais cette somme n’est pas directe.

Théorème
Deux sous-espaces vectoriels F et G de E sont supplémentaires si et seulement si
E = F + G et F ∩ G = {0E} :

Démonstration. Tout découle des deux parties précédentes. □

Remarques.
• Il est possible d’avoir E = F ⊕ G = F ⊕ H avec G et H différents.

Dans ce cas G est un supplémentaire de F , et H en est un autre.
Pour cette raison il est incorrect d’écrire le supplémentaire de F , il faut écrire un
supplémentaire de F .

• Dans tous les cas : E = E ⊕ {0E}.
• Il ne faut pas confondre supplémentaire et complémentaire.

En effet le complémentaire d’un sous-espace vectoriel n’est jamais un sous-espace vec-
toriel, car il ne contient pas 0E.

▶▷ Exercice 7.
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III. Familles de vecteurs
Dans toute cette partie E désigne un espace vectoriel sur K.

A. Familles génératrices

Définition
Soit F = (u1, . . . , up) une famille de vecteurs de E.
On dit que la famille F est génératrice de E si E = Vect (F).

Exemple 7. Parmi les familles suivantes de vecteurs de R3 :

F1 = ((1, 0, 0), (0, 1, 0)) F2 = ((1, 0, 0), (0, 1, 0), (2, 0, 0))

F3 = ((1, 0, 0), (0, 1, 0), (0, 1, 1)) F4 = ((1, 0, 0), (0, 1, 0), (0, 0, 0))

F5 = ((1, 0, 0), (0, 1, 0), (2, 0, 0), (0, 0, 1))

Celles qui sont génératrices de R3 sont

Proposition
Si (u1, . . . , up) est génératrice de E et si up est combinaison linéaire des vecteurs
u1, . . . , up−1 alors la famille (u1, . . . , up−1) est génératrice de E.

Démonstration. Comme up est combinaison linéaire des vecteurs u1, . . . , up−1 alors il existe
des scalaires α1, . . . αp−1 tels que :

up = α1u1 + · · · + αp−1up−1

Comme la famille (u1, . . . , up) est génératrice de E alors pour tout u de E il existe des
scalaires λ1, . . . , λp tels que :

u = λ1u1 + · · · + λpup

Ceci donne :
u = (λ1 + λpα1)u1 + · · · + (λp−1 + λpαp−1)up−1

Ainsi tout vecteur u de E est combinaison linéaire des vecteurs u1, . . . , up−1 et donc que
la famille (u1, . . . , up−1) est génératrice de E. □

Proposition
Soit F et G deux familles de vecteurs de E telles que F ⊆ G.
Si F est génératrice de E alors G est génératrice de E.

Démonstration. En effet, si F ⊆ G alors Vect (F) ⊆ Vect ( G).
Donc si E = Vect (F) alors E ⊆ Vect ( G) ⊆ E, donc E = Vect ( G) et G est génératrice
de E. □
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Exemple 8. Donner une famille génératrice de :
• F = {(x, y) ∈ R2 | 3x + 2y = 0}.
• G = {(x, y, z) ∈ R3 | 2x − 5y + 4z = 0}

▶▷ Exercice 8.

Proposition
Soit F un sous-espace vectoriel de E, et F un famille génératrice de F . Alors F est
invariant par opérations élémentaires sur les vecteurs de F.
Plus précisément, si F = (u1, . . . , up) alors :
• Pour tout (i, j) ∈ {1, . . . , p}2 avec i ̸= j et α ∈ K :

F = Vect (u1, . . . , ui−1, ui + αuj, ui+1, . . . , up)

• Pour tout i ∈ {1, . . . , p} et λ ∈ K∗ :

F = Vect (u1, . . . , ui−1, λui, ui+1, . . . , up)

• Pour tout (i, j) ∈ {1, . . . , p}2 avec i < j :

F = Vect(u1, . . . , uj
(i)

, . . . , ui
(j)

, . . . , up)

Démonstration. Soit F′ la famille obtenue par opération élémentaire sur les élément de
F, et F ′ = Vect

(
F′).

On vérifie que F′ ⊆ Vect (F) et F ⊆ Vect
(
F′).

Par propriété ceci implique F ′ ⊆ F et F ⊆ F ′, donc F = F ′. □

Proposition
Soit F et G deux sous-espaces vectoriels de E. Si F est une famille génératrice de F et
G est une famille génératrice de G, alors F∪ G est une famille génératrice de F + G.

Démonstration. On note F = (u1, . . . , up) et G = (v1, . . . , vq). Comme F est une famille
génératrice de F et G est une famille génératrice de G alors

F = {λ1u1 + · · · + λpup | (λ1, . . . , λp) ∈ Kp}
et G = {µ1v1 + · · · + µqvq | (µ1, . . . , µq) ∈ Kq}

Par définition : F + G = {u + v | (u, v) ∈ F × G}

Donc F + G = {λ1u1 + · · · + λpup + µ1v1 + · · · + µqvq | (λ1, . . . , λp, µ1, . . . , µq) ∈ Kp+q}
= Vect (u1, . . . , up, v1, . . . , vq)
= Vect (F∪ G)

Ceci montre bien que la famille F∪ G est génératrice de F + G. □
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B. Familles libres

Définitions
Soit F = (u1, . . . , up) une famille de vecteurs de E.
On dit que la famille F est libre si :

Dans ce cas on dit aussi que les vecteurs u1, . . . , up sont linéairement indépendants.
Si la famille F n’est pas libre, on dit qu’elle est liée, ou que les vecteurs u1, . . . , up sont
linéairement dépendants.

Proposition
Une famille est liée si et seulement si un de ses vecteurs est combinaison linéaire des
autres.

Démonstration.

Exemple 7 (suite).

Parmi les familles F1 à F5 celles qui sont libres sont

Exemple 9. La famille F = ((1, 1, 0), (1, 0, 1), (0, 1, 1)) est-elle libre ?

▶▷ Exercices 9, 10.
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Proposition
Soit u1, . . . , up+1 des vecteurs de E.
(i) Si la famille (u1, . . . , up+1) est libre alors la famille (u1, . . . , up) est libre.

(ii) Si la famille (u1, . . . , up) est liée alors la famille (u1, . . . , up+1) est liée.
(iii) Si la famille (u1, . . . , up) est libre alors la famille (u1, . . . , up+1) est liée si et seule-

ment si up+1 est combinaison linéaire de u1, . . . , up.

Démonstration. La propriété (ii) est conséquence de la propriété précédente, la propriété
(i) est la contraposée de la propriété (ii).
Démontrons la propriété (iii).
Supposons que la famille (u1, . . . , up) est libre et que la famille (u1, . . . , up+1) est liée.
Alors il existe (λ1, . . . , λp+1) ∈ Kp+1 \ {0Kp+1} tel que λ1u1 + · · · + λp+1up+1 = 0E.
Si λp+1 = 0 alors λ1u1 + · · · + λpup = 0E, ce qui implique λ1 = · · · = λp = 0 car la famille
(u1, . . . , up) est libre. Mais la famille (λ1, . . . , λp+1) est supposée non-nulle, donc on ne
peut avoir λp+1 = 0.

Ainsi λp+1 ̸= 0, donc up+1 =
p∑

i=1

Ä
− λi

λp+1

ä
ui, i.e., up+1 est combinaison linéaire de u1, . . . , up.

Réciproquement, si la famille (u1, . . . , up) est libre et up+1 est combinaison linéaire de
u1, . . . , up alors la famille (u1, . . . , up+1) est liée d’après la proposition précédente. □

Proposition
• La famille vide est libre.
• Soit u un vecteur de E. Alors la famille (u) est libre si et seulement si u est non-nul.
• Soit u et v deux vecteurs de E. La famille (u, v) est libre si et seulement si aucun

des deux vecteurs n’est colinéaire à l’autre.
En d’autres termes, la famille (u, v) est liée s’il existe λ ∈ K tel que u = λv ou s’il
existe λ ∈ K tel que v = λu.

Exemple 10. Soit E = RR, et f1, f2, f3 les trois vecteurs de E définis par :

∀x ∈ R f1(x) = cos x f2(x) = sin x f3(x) = cos
(

x + π

3

)
Alors la famille (f1, f2) est libre.

▶▷ Exercice 11.

Proposition

Une famille de polynômes non-nuls de degrés distincts est libre.

Démonstration. Soit (Pi)i=0...n une famille de polynômes non-nuls de degrés distincts.
Quitte à permuter les polynômes Pi on peut supposer qu’ils sont de degrés strictement
croissants.
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Soit (λi)i=0,...,n une famille de scalaires telle que :
n∑

i=0
λiPi = 0K[X]

Supposons que cette famille n’est pas la famille nulle. Il existe alors un indice m maximal
tel que λm est non-nul, et donc :

m∑
i=0

λiPi = 0K[X] puis Pm = −
m−1∑
i=0

λi

λm

Pi

Comme la famille (P0, . . . , Pn) est de degrés strictement croissants alors les degrés de
P0, . . . , Pm−1 sont strictement inférieurs à celui de Pm donc :

deg
Ç

−
m−1∑
i=0

λi

λm

Pi

å
⩽ max {deg Pi | i = 0 . . . m − 1} < deg Pm

Ceci est une contradiction, donc la famille (λi)i=0...n est nulle, et ainsi la famille (Pi)0⩽i⩽n

est libre. □

Définition
Une famille (P0, . . . , Pn) de polynômes est dite de degrés échelonnés si la suite
(deg Pi)i=0...n est strictement croissante.

Corollaire
Une famille de polynômes non-nuls de degrés échelonnés est libre.

C. Bases

Définition
Soit F = (u1, . . . , up) une famille de vecteurs de E.
On dit que la famille F est une base de E si elle est libre et génératrice.

Exemple 7 (suite).

Parmi les familles F1 à F5 les bases sont

Théorème
Soit B = (u1, . . . , un) une base de E et u un vecteur de E.
Alors il existe un unique n-uplet (λ1, . . . , λn) de scalaires tel que :

u = λ1u1 + · · · + λnun

Définition
On appelle coordonnées de u dans la base B ce n-uplet.
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Démonstration.

Proposition
Soit B = (u1, . . . , un) une famille de vecteurs de E. Si pour tout u ∈ E il existe un
unique n-uplet (λ1, . . . , λn) de scalaires tel que u = λ1u1 + · · · + λnun alors B est une
base de E.

Démonstration. La famille B est génératrice car tout vecteur de E est combinaison linéaire
de ses vecteurs.
Démontrons qu’elle est libre. Soit (λ1, . . . , λn) un n-uplet de scalaires tel que :

λ1u1 + · · · + λnun = 0E

Par hypothèse 0E s’écrit de façon unique comme combinaison linéaire des ui. Or :

0Ku1 + · · · + 0Kun = 0E

Par unicité on obtient :
λ1 = · · · = λn = 0K

Ceci montre que la famille B est libre.
La famille B est libre et génératrice de E donc c’est une base de E. □

Exemple 11. Dans E = R3 on pose :
B1 = ((1, 0, 0), (0, 1, 0), (0, 0, 1)) B2 = ((1, 0, 0), (1, 1, 0), (1, 1, 1)) u = (9, 3, 7)

Alors les deux familles B1 et B2 sont des bases de E.
Quelles sont les coordonnées de u dans ces bases ?

▶▷ Exercice 12.
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D. Base canonique

Définition
Soit E = Kn. Pour i = 1, . . . , n on note ei le vecteur ne contenant que des 0 sauf un 1
en i-ème position :

Alors la famille Bc = (e1, . . . , en) est une base de Kn, appelée base canonique de Kn.
Les coordonnées du vecteur u = (a1, . . . , an) dans cette base sont (a1, . . . , an).

Définition
Soit E = Kn[X], où n ∈ N. Alors la famille

est une base de E, appelée base canonique de Kn[X].

Les coordonnées du polynôme
n∑

k=0
akXk dans cette base sont (a0, . . . , an).

Définition
Soit E = Mnp(K). On note Eij la matrice ne contenant que des zéros, sauf un 1 en
position (i, j).

La famille (Eij | 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ p) est une base de E, appelée base canonique de
Mnp(K).

Exemple. La base canonique de M2(R) est (E11, E12, E21, E22).

Les coordonnées de A =
Å

4 −6
0 3

ã
dans cette base sont

Remarque. Les espaces vectoriels RN et RR n’ont pas de base canonique.

▶▷ Exercices 13, 14.
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E. Dimension

Définition
Un espace vectoriel est dit de dimension finie s’il admet une famille génératrice finie.

Théorème
• Si un espace vectoriel est de dimension finie alors il admet une base.
• Dans ce cas toutes ses bases ont le même cardinal.

Définition
On appelle dimension de E et on note dim E le cardinal de ses bases.

Remarque. La démonstration et la suite au chapitre B10 : dimension.
Exemple 12. Les espaces vectoriels Kn, Kn[X] et Mnp(K) sont de dimensions finies, et :

dimKn = dimKn[X] = dim Mnp(K) =

F. Extension aux familles infinies
On note toujours E un espace vectoriel sur K.

Définition
Soit E une partie de E. Une combinaison linéaire d’éléments de E est une combinaison
linéaire d’un nombre fini d’éléments de E.

Exemple. Tout polynôme deK[X] est combinaison linéaire d’éléments de
{

Xk
∣∣ k ∈ N

}
.

Définition
Soit E une partie de E.
On note Vect (E) l’ensemble des combinaisons linéaires d’éléments de E.

Proposition

Pour toute partie E de E l’ensemble Vect (E) est un sous-espace vectoriel de E.

Démonstration. La démonstration est identique au cas où la partie E est finie. On remarque
que la somme de deux combinaisons linéaires d’éléments de E est une combinaison linéaire
d’éléments de E, car l’union de deux ensembles finis est un ensemble fini. □
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Remarque.
• Comme pour le cas fini, Vect (E) est le plus petit sous-espace vectoriel de E contenant

E, et l’intersection de tous les sous-espaces vectoriels de E contenant E.
• Soit F un sous-espace vectoriel de E. On dit que E est une partie génératrice de F si

F = Vect (E).

Notation
Soit I un ensemble infini.
• On note KI l’ensemble des familles de scalaires indexées par I :

KI = {(λi)i∈I | ∀i ∈ I λi ∈ K}

• On note K(I) l’ensemble des familles presque nulles de scalaires indexées par I,
c’est-à-dire des familles dont tous les termes sont nuls sauf un nombre fini d’entre
eux.

Remarque. Si λ = (λi)i∈I est une famille de KI alors le support de λ est l’ensemble des
indices i pour lesquels λi est non-nul. C’est une partie de I.
Ainsi les familles presque nulles sont les familles à support fini.
Exemples.
• Dans le cas où I = N : une suite (λn)n∈N est presque nulle si et seulement si elle est

nulle à partir d’un certain rang.
• On peut définir l’ensemble K[X] par :

K[X] =
®∑

k∈N
akXk

∣∣∣∣∣ (ak)k∈N ∈ K(N)
´

Définition
Soit E une partie de E

• On dit que E est libre si toute famille finie d’éléments de E est libre.
• On dit que E est liée si elle n’est pas libre, ce qui signifie qu’il existe une famille finie

d’éléments de E linéairement dépendants.

Exemple 13. Pour tout a ∈ R∗
+ on pose fa(x) = ax.

Démontrer que la famille A =
{

fa | a ∈ R∗
+
}

est une famille libre de F(R,R).
Remarque. Comme dans le cas fini, une base de E est une famille E = (ei)i∈I libre et
génératrice de E.
Dans le cas où I est infini, tout vecteur s’écrit de façon unique comme combinaison linéaire
d’éléments de cette famille, ce qui donne en terme de familles presque nulles :

∀u ∈ E ∃!(λi)i∈I ∈ K(I) u =
∑
i∈I

λiei

Les λi sont toujours appelés coordonnées de u dans la base E.
Exemple. La famille

{
Xk

∣∣ k ∈ N
}

est une base de K[X], appelée base canonique de
K[X].
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