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MPSI – Mathématiques

Corrigé du Devoir à la Maison no8

1. (a) On démontre que la suite (In)n∈N est décroissante et minorée.
Soit n un entier naturel fixé.
Si t ∈

[
0, π

2
]

alors 0 ⩽ sin t ⩽ 1, donc :

∀t ∈
[
0,

π

2

]
0 ⩽ sinn+1 t ⩽ sinn t.

Par croissance de l’intégrale :

0 ⩽
∫ π

2

0
sinn+1 t dt ⩽

∫ π
2

0
sinn t dt.

Ceci est valable pour tout n donc on a démontré que :

∀n ∈ N 0 ⩽ In+1 ⩽ In.

La suite (In)n∈N est minorée par 0 et décroissante, donc elle converge d’après le
théorème de la limite monotone.

(b) Soit n ∈ N fixé. On commence par expliciter In+2 :

In+2 =
∫ π

2

0
sinn+2 t dt.

On pose u′(t) = sin t et v(t) = sinn+1 t. Alors u(t) = − cos t et v′(t) = (n +
1) cos t sinn t.
Les fonctions u et v sont de classe C1 sur le segment

[
0, π

2
]
. Le théorème d’intégra-

tion par parties donne :

In+2 =
[

− cos t sinn+1 t
]π

2

0
+

∫ π
2

0
(n + 1) cos2 t sinn t dt.

On calcule :

In+2 = 0 + (n + 1)
∫ π

2

0
(1 − sin2 t) sinn t dt

= (n + 1)
Å∫ π

2

0
sinn t dt −

∫ π
2

0
sinn+2 t dt

ã
par linéarité

= (n + 1)(In − In+2) = (n + 1)In − (n + 1)In+2.

Ceci donne :
(n + 2)In+2 = (n + 1)In.

C’est le résultat attendu.
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(c) En multipliant le résultat de la question précédente par In+1 on obtient :

∀n ∈ N (n + 2)In+1In+2 = (n + 1)InIn+1.

Ceci montre que la suite ((n + 1)InIn+1)n∈N est constante : deux de ses termes
consécutifs sont égaux.
On calcule :

I0 =
∫ π

2

0
1 dt =

[
t
]π

2

0
= π

2 et I1 =
∫ π

2

0
sin t dt =

[
− cos t

]π
2

0
= 1.

Pour n = 0 on obtient (n + 1)InIn+1 = I0I1 = π
2 .

On en déduit donc :

∀n ∈ N (n + 1)InIn+1 = π

2 .

(d) La formule précédente peut s’écrire :

∀n ∈ N InIn+1 = π

2(n + 1) . (1)

On sait depuis la question 1 que la suite (In)n∈N est convergente. Notons ℓ sa limite.
Par décalage la suite (In+1)n∈N converge également vers ℓ.
Par produit la suite (InIn+1)n∈N converge vers ℓ2.
Or la suite

Ä
π

2(n+1)

ä
n∈N

converge vers 0.
Par unicité de la limite, l’égalité (1) montre que ℓ2 = 0, et donc ℓ = 0.
En conclusion la suite (In)n∈N converge vers 0.

2. (a) On sait que la suite (In)n∈N est décroissante, donc :

∀n ∈ N In+2 ⩽ In+1 ⩽ In.

Comme la suite ((n + 1)InIn+1) est constante égale à π
2 alors aucun In ne peut être

nul.
Mais on sait que les termes In sont positifs, ils sont donc strictement positifs.
Par division par In on obtient :

∀n ∈ N In+2

In

⩽
In+1

In

⩽ 1.

D’après la question c, comme (n + 2)In+2 = (n + 1)In alors :

∀n ∈ N n + 1
n + 2 ⩽

In+1

In

⩽ 1.

Or lim n+1
n+2 = 1, donc par théorème d’encadrement :

lim
n→+∞

In+1

In

= 1.

Ceci montre que les suites (In)n∈N et (In+1)n∈N sont équivalentes.
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(b) La formule (1) nous a donné :

∀n ∈ N InIn+1 = π

2(n + 1) .

On en déduit :
I2

n ∼ InIn+1 = π

2(n + 1) ∼ π

2n
.

Comme la suite (In) est positive alors
√

I2
n = In, donc :

In ∼
+∞

…
π

2n
.

On a prouvé que la suite (In) converge vers 0, et on en a aussi donné un équivalent.

3. (a) Pour tout n ∈ N on note Pn la proposition : I2n = (2n)!
4n(n!)2

π

2 .

On démontre par récurrence que cette proposition est vraie pour tout n ∈ N.
Initialisation. Pour n = 0 on a I0 = π

2 = 0!
40(0!)2

π
2 , donc la proposition P0 est vraie.

Hérédité. Supposons que pour un n ∈ N la proposition Pn est vraie.
D’après l’égalité de la question (1b) :

I2n+2 = 2n + 1
2n + 2I2n.

En utilisant l’hypothèse de récurrence :

I2(n+1) = 2n + 1
2n + 2

(2n)!
4n(n!)2

π

2 = 2n + 2
2(n + 1)

2n + 1
2(n + 1)

(2n)!
4n(n!)2

π

2

On obtient :
I2(n+1) = (2n + 2)!

4n+1((n + 1)!)2
π

2
La propriété Pn+1 est donc vraie.
L’hérédité est démontrée.
Conclusion. Par récurrence la propriété Pn est vraie pour tout n ∈ N.

(b) Comme
(2n

n

)
= (2n)!

(n!)2 alors la relation précédente donne :

∀n ∈ N
Ç

2n

n

å
= 2 × 4n

π
I2n

D’après la question (2) : I2n ∼
+∞

…
π

4n
.

On en déduit l’équivalent : Ç
2n

n

å
∼ 4n

√
πn

.
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4. (a) Soit n ⩾ 1. On calcule :

ln un+1

un

= ln
Ç

(n + 1)n+1√n + 1
en+1(n + 1)! × enn!

nn
√

n

å
= ln

ñÅ
n + 1

n

ãn+ 1
2 1

e

ô
=
Å

n + 1
2

ã
ln
Å

1 + 1
n

ã
− 1

On pose h = 1
n
. Alors :

ln un+1

un

=
Å1

h
+ 1

2

ã
ln (1 + h) − 1

=
Å1

h
+ 1

2

ãÅ
h − h2

2 + h3

3 − h4

4 + h5

5 + oh→0(h5)
ã

− 1

= 1 − h

2 + h2

3 − h3

4 + h4

5 + h

2 − h2

4 + h3

6 − h4

8 − 1 + oh→0(h4)

= h2

12 − h3

12 + 3h4

40 + oh→0(h4)

Ceci donne le développement asymptotique :

ln un+1

un

= 1
12n2 − 1

12n3 + 3
40n4 + o+∞

Å 1
n4

ã
Ensuite :

ln vn+1

vn

= ln un+1e
1

12(n+1)

une
1

12n

= ln un+1

un

+ 1
12(n + 1) − 1

12n

En posant h = 1
n

:

1
12(n + 1) − 1

12n
= − 1

12n(n + 1) = − h2

12(1 + h)

= −h2

12
(
1 − h + h2 + oh→0(h2)

)
= −h2

12 + h3

12 − h4

12 + oh→0(h4) = − 1
12n2 + 1

12n3 − 1
12n4 + o+∞

Å 1
n4

ã
Finalement :

ln vn+1

vn

= − 1
120n4 + o+∞

Å 1
n4

ã
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(b) Les développements limités obtenus dans la question précédente montrent que :

ln un+1

un

∼ 1
12n2 et ln vn+1

vn

∼ − 1
120n4

Ainsi la suite
Ä
ln un+1

un

ä
et positive à partir d’un certain rang et la suite

Ä
ln vn+1

vn

ä
et

négative à partir d’un certain rang.
En conséquence, à partir d’un certain rang : un+1

un
⩾ 1 et vn+1

vn
⩽ 1.

Comme les suites (un) et (vn) sont strictement positives, alors ceci montre que la
suite (un) est croissante à partir d’un certain rang et la suite (vn) est décroissante
à partir d’un certain rang.

(c) D’après la question précédente il existe un entier naturel N tel que :

∀n ∈ N n ⩾ N =⇒ un ⩽ un+1 et vn+1 ⩽ vn

La suite (un) est croissante à partir du rang N et la suite (vn) est décroissante à
partir du rang N .
De plus, comme 1

12n
> 0 alors e

1
12n > 1 et donc un < vn. Ceci montre que :

∀n ∈ N n ⩾ N =⇒ uN ⩽ un < vn ⩽ vN

Ainsi la suite (un) est croissante à partir du rang N et majorée par vN .
Par théorème de la limite monotone elle est convergente, et par théorème de com-
paraison sa limite ℓ vérifie uN ⩽ ℓ ⩽ vN .
Comme uN est strictement positif alors ℓ est strictement positif.

(d) On calcule, pour n ∈ N∗ :

(un)2

u2n

= n2n × n

e2n(n!)2 × e2n(2n)!
(2n)2n

√
2n

=
(2n

n

)
4n

…
n

2 .

D’après la question (3b) :
(un)2

u2n

∼ 1
4n

4n

√
πn

…
n

2 = 1√
2π

La suite
Ä

(un)2

u2n

ä
converge donc vers 1√

2π
.

D’autre part la suite (un) converge vers ℓ, et comme la suite (u2n) en est extraite
alors elle converge aussi vers ℓ. Comme ℓ ̸= 0 la suite

Ä
(un)2

u2n

ä
converge vers ℓ2

ℓ
= ℓ.

Ceci donne :
ℓ = 1√

2π
.

(e) Comme la suite (un) converge vers 1√
2π

alors la suite
(√

2πun

)
converge vers 1, i.e., :

√
2π

nn
√

n

enn! −−−−→
n→+∞

1

On en déduit l’équivalence :

n! ∼
√

2πn
(n

e

)n

.
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