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Chapitre A10
Limites et continuité

I. Limites

A. Voisinages

Définition
Soit V une partie quelconque de R et a un réel. On dit que :
• V est un voisinage de a s’il existe ε > 0 tel que ]a − ε, a + ε[ ⊆ V .
• V est un voisinage de +∞ s’il existe un réel A tel que ]A, +∞[ ⊆ V .
• V est un voisinage de −∞ s’il existe un réel A tel que ]−∞, A[ ⊆ V .

Exemples.
• ]0, 1[ est un voisinage de 1

2 , mais aussi de 1
3 .

En fait il est voisinage de tous ses points.
• R est un voisinage de tout réel, de +∞ et de −∞.
• [2, 6] est un voisinage de 3, de π, et de tout point de l’intervalle ]2, 6[, mais n’est un

voisinage ni de 2 ni de 6.
• ]−1, 5[ ∪ [8, +∞[ est un voisinage de +∞.
• Z n’est un voisinage d’aucun réel, ni de ±∞. De même pour Q.
Remarque. On peut remplacer dans la définition ]a − ε, a + ε[ par [a − ε, a + ε]. En effet :

∃ε > 0 ]a − ε, a + ε[ ⊆ V ⇐⇒ ∃ε > 0 [a − ε, a + ε] ⊆ V

Proposition

Soit a un élément de R.
Si V et V ′ sont deux voisinages de a alors V ∩ V ′ est un voisinage de a.

Démonstration.
• Supposons que a est réel.

Comme V et V ′ sont voisinages de a alors il existe deux réels ε > 0 et ε′ > 0 tels que :

]a − ε, a + ε[ ⊆ V et ]a − ε′, a + ε′[ ⊆ V ′.

Posons ε′′ = Min {ε, ε′}. Alors ε′′ > 0, et :

]a − ε′′, a + ε′′[ ⊆ ]a − ε, a + ε[ ⊆ V et ]a − ε′′, a + ε′′[ ⊆ ]a − ε′, a + ε′[ ⊆ V ′.

Donc :
]a − ε′′, a + ε′′[ ⊆ V ∩ V ′.

Ainsi V ∩ V ′ est voisinage de a.
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• Supposons que a = +∞.
Comme V et V ′ sont voisinages de +∞ alors il existe deux réels A et A′ tels que :

]A, +∞[ ⊆ V et ]A′, +∞[ ⊆ V ′.

Posons A′′ = Max {A, A′}. Alors :

]A′′, +∞[ ⊆ ]A, +∞[ ⊆ V et ]A′′, +∞[ ⊆ ]A′, +∞[ ⊆ V ′.

Donc
]A′′, +∞[ ⊆ V ∩ V ′.

Ainsi V ∩ V ′ est voisinage de +∞.
• Le cas où a = −∞ est similaire au précédent. □

Définitions (Hors programme)
Soit D une partie de R.
• Un réel a est dit intérieur à D si D est voisinage de a.

L’ensemble des points intérieurs à D est appelé intérieur de D et noté D̊.
• Un élément a de R est dit adhérent à D si tout voisinage de a rencontre D.

L’ensemble des points adhérents à D est appelé adhérence de D et noté D.

Exemple. Une partie D de R est dense dans R si et seulement si D = R.

Définition
Pour tout intervalle I on note I l’union de I et de ses extrémités.
C’est un sous-ensemble de R = R ∪ {±∞}.

Remarque. Soit a ∈ R. Alors :

a ∈ I ⇐⇒ Pour tout voisinage V de a : V ∩ I ̸= ∅
⇐⇒ Il existe une suite d’éléments de I admettant a pour limite.
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B. Définition de la limite
Dans toute la suite de ce chapitre I désigne un intervalle de R non réduit à un point.

Définition
Soit f : I → R une fonction, a un élément de I et ℓ un élément de R.
On dit que f admet ℓ pour limite en a si :
Pour tout voisinage Vℓ de ℓ, il existe un voisinage Va de a tel que :

∀x ∈ I (x ∈ Va =⇒ f(x) ∈ Vℓ)

Cette dernière implication s’écrit aussi :

f(Va ∩ I) ⊆ Vℓ

On note alors f(x) −−→
x→a

ℓ.

Définitions alternatives
Soit f : I → R une fonction, a ∈ I et ℓ ∈ R
• Si a et ℓ sont réels, on dit que f admet ℓ pour limite en a si :

• Si a = +∞ et ℓ est réel, on dit que f admet ℓ pour limite en +∞ si :

• Si a = +∞ et ℓ = +∞, on dit que f admet +∞ pour limite en +∞ si :

• Si a est fini et ℓ = +∞, on dit que f admet +∞ pour limite en a si :

On définit de même les limites en −∞ et les limites égales à −∞.

▶▷ Exercice 1.
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Proposition (Unicité)

Si f admet pour limites ℓ et ℓ′ en a alors ℓ = ℓ′.

Définition
Si f admet ℓ pour limite en a alors on dit que ℓ est la limite de f en a, et on note :

ℓ = lim
x→a

f(x) ou ℓ = lim
a

f

Lemme
Si ℓ et ℓ′ sont deux éléments distincts de R alors il existe un voisinage V de ℓ et un
voisinage V ′ de ℓ′ tels que V ∩ V ′ = ∅.

Démonstration. Par disjonction de cas :
• Si ℓ et ℓ′ sont finis alors on pose ε = 1

3 |ℓ − ℓ′|. Les voisinages

V = ]ℓ − ε, ℓ + ε[ et V ′ = ]ℓ′ − ε, ℓ′ + ε[

sont bien disjoints.
• Si ℓ est fini et ℓ′ = +∞ alors les voisinages

V = ]ℓ − 1, ℓ + 1[ et V ′ = ]ℓ + 2, +∞[

sont bien disjoints.
• Si ℓ = −∞ et ℓ′ = +∞ alors les voisinages

V = ]−∞, −1[ et V ′ = ]1, +∞[

sont bien disjoints.
• On traite de même les autres cas. □

Démonstration de l’unicité de la limite.
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C. Continuité en un point

Lemme
Soit f : I → R une fonction, et a un point de I.
Si f admet une limite en a, alors lim

x→a
f(x) = f(a).

Démonstration. Si f admet un réel ℓ pour limite en a alors :

∀ε > 0 ∃η > 0 ∀x ∈ I |x − a| ⩽ η =⇒ |f(x) − ℓ| ⩽ ε

Comme a appartient à I alors l’inégalité |x − a| ⩽ η est vraie pour x = a donc :

∀ε > 0 |f(a) − ℓ| ⩽ ε

Ceci signifie exactement que f(a) = ℓ.
Si maintenant f admet +∞ pour limite en a alors :

∀A ∈ R ∃η > 0 ∀x ∈ I |x − a| ⩽ η =⇒ f(x) ⩾ A

Comme a appartient à I alors l’inégalité f(x) ⩾ A est vraie pour x = a donc :

∀A ∈ R f(a) ⩾ A

Ceci est impossible, il suffit de poser par exemple A = f(a) + 1.
Donc finalement, si f admet une limite en a alors cette limite est f(a). □

Définition
Soit a un élément de I. Une fonction f : I → R est continue en a si elle admet une
limite en a, donc si :

Remarque. En d’autres termes, f est continue en a si et seulement si :

Exemple.
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Définition
Soit f : I → R une fonction, a et ℓ deux réels. On suppose que a est une borne de I,
mais que a n’est pas élément de I.
On dit que f est prolongeable par continuité en a si f admet une limite finie en a.
Soit ℓ = lim

x→a
f(x). La fonction f définie par :

est appelée prolongement par continuité de f en a. Elle est continue en a.

D. Limites à droite et à gauche

Définition
Soit f : I → R une fonction, a un élément de I et ℓ un élément de R.
On dit que f admet ℓ pour limite à gauche en a, respectivement limite à droite en a,
si la restriction de f à I ∩ ]−∞, a[, respectivement à I ∩ ]a, +∞[, admet ℓ pour limite
en a.
On note alors ℓ = lim

x→a
x<a

f(x), respectivement ℓ = lim
x→a
x>a

f(x).

Exemple.

Remarque. Soit a un réel. Si f admet ℓ pour limite en a, alors f admet ℓ pour limite à
gauche et à droite en a. La réciproque est fausse en général.
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Définition
Soit f : I → R une fonction, a un élément de I.
On dit que f est continue à gauche en a, respectivement continue à droite en a, si la
restriction de f à I ∩ ]−∞, a], respectivement à [a, +∞[, est continue en a.

Remarque. Une fonction est continue en a si et seulement si elle est continue à gauche
et à droite en a.
Exemple. Fonction partie entière f : R −→ R

x 7−→ ⌊x⌋

• Si n ∈ Z alors f est continue à droite en n mais n’est pas continue à gauche.
En effet :

lim
x→n
x>n

⌊x⌋ = n = ⌊n⌋ et lim
x→n
x<n

⌊x⌋ = n − 1 ̸= ⌊n⌋

• Si x ∈ R \ Z alors f est continue en x.
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II. Propriétés

A. Opérations sur les limites

Théorème
Soit f, g : I → R deux fonctions, a un élément de I et λ, ℓ, k des réels.
Si f −→

a
ℓ et g −→

a
k alors :

λf −→
a

λℓ f + g −→
a

ℓ + k fg −→
a

ℓk

Si de plus k est non-nul alors :
f

g
−→

a

ℓ

k
.

Démonstration. Analogue à celle pour les suites. □

Remarque. Les autres opérations sur les limites sont aussi valables pour les fonctions.
Par exemple si lima f = ℓ et lima g = +∞ alors lima

f
g

= 0.
Remarque. Si a et ℓ sont finis alors on ramène souvent les limites en 0, grâce aux
équivalences :

lim
x→a

f(x) = ℓ ⇐⇒ lim
x→a

(f(x) − ℓ) = 0
⇐⇒ lim

h→0
f(a + h) = ℓ

⇐⇒ lim
h→0

(f(a + h) − ℓ) = 0

Théorème (composition de limites)

Soit f : I → R et g : J → R deux fonctions telles que f(I) ⊆ J . Soit a un élément de
I, b un élément de J , c un élément de R.

Si lim
a

f = b et lim
b

g = c alors lim
a

g ◦ f = c

Démonstration. Soit Vc un voisinage de c.
Comme g admet c pour limite en b alors il existe un voisinage Vb de b tel que :

g(Vb ∩ J) ⊆ Vc

Comme f admet b pour limite en a alors il existe un voisinage Va de a tel que :

f(Va ∩ I) ⊆ Vb

Ceci implique f(Va ∩ I) ⊆ Vb ∩ J puisque f(I) ⊆ J , et donc :

g(f(Va ∩ I)) ⊆ g(Vb ∩ J) ⊆ Vc

On a démontré que pour tout voisinage Vc de c il existe un voisinage Va de a tel que
g ◦ f(Va ∩ I) ⊆ Vc. Ceci signifie bien que g ◦ f admet c pour limite en a. □
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Corollaire
Soit f : I → R et g : J → R deux fonctions telles que f(I) ⊆ J . Soit a un point de I.
Si f est continue en a et g est continue en f(a) alors g ◦ f est continue en a.

Démonstration. Ce corollaire est conséquence immédiate du théorème précédent.
Comme f est continue en a et g est continue en f(a) alors :

f(x) −−→
x→a

f(a) et g(y) −−−−→
y→f(a)

g(f(a))

Par composition de limites :
g(f(x)) −−→

x→a
g(f(a))

Donc g ◦ f est continue en a. □

Démonstration sans les voisinages.

B. Théorèmes

Proposition

Soit f : I → R une fonction, a un élément de I.
Si f admet une limite finie en a alors f est bornée au voisinage de a.

Remarque. Ceci signifie qu’il existe un voisinage Va de a sur lequel f est bornée. Ainsi,
si a est fini alors il existe un réel η > 0 et un réel M tels que :

∀x ∈ I x ∈ ]a − η, a + η[ =⇒ |f(x)| ⩽ M

Si a = +∞, alors il existe deux réels A et M tels que :

∀x ∈ I x ∈ ]A, +∞[ =⇒ |f(x)| ⩽ M
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Démonstration. On applique la définition de l’existence d’une limite finie ℓ en a en posant
ε = 1. Il existe alors un voisinage Va de a tel que :

∀x ∈ I x ∈ Va =⇒ |f(x) − ℓ| ⩽ 1

Ainsi pour tout x élément de Va ∩ I, f(x) est élément de l’intervalle [ℓ − 1, ℓ + 1], donc f
est bornée sur Va. □

Exemple. On considère la fonction f : R∗
+ −→ R

x 7−→ 1
x
·

Alors f admet 0 pour limite en +∞, donc f est bornée au voisinage de +∞. Par exemple
f est bornée sur l’intervalle [2, +∞] (par 1

2 , 1, 5...).
Par contre, f n’est pas bornée, i.e., elle n’est pas bornée sur son ensemble de définition,
car elle admet +∞ pour limite en 0.

Proposition

Soit f : I → R une fonction, a un élément de I. On suppose que f admet une limite
strictement positive en a. Alors f est strictement positive au voisinage de a.

▶▷ Exercice 2.

Corollaire
Soit f continue en a telle que f(a) > 0. Alors f est strictement positive au voisinage
de a, i.e., il existe ε > 0 tel que :

∀x ∈ ]a − ε, a + ε[ ∩ I f(x) > 0

Remarque. La locution «au voisinage de» pour les fonctions remplace la locution «à
partir d’un certain rang» pour les suites.

Théorème de comparaison

Soit f, g : I → R deux fonctions et a ∈ I.
On suppose que f ⩽ g au voisinage de a.
• Si f et g admettent respectivement les réels ℓ et k pour limites en a, alors ℓ ⩽ k.
• Si f admet +∞ pour limite en a alors g admet +∞ pour limite en a.
• Si g admet −∞ pour limite en a alors f admet −∞ pour limite en a.

Remarque. Si f < g au voisinage de a alors les conclusions sont les mêmes, l’inégalité
stricte devient large par passage à la limite :

(∀x ∈ Va f(x) < g(x)) =⇒ lim
a

f ⩽ lim
a

g
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Théorème d’encadrement
Soit f, g, h : I → R trois fonctions et a ∈ I.
On suppose que f ⩽ g ⩽ h au voisinage de a.
Si f et h admettent la même limite ℓ en a alors g admet pour limite ℓ en a.

▶▷ Exercice 3.

Théorème de la limite monotone
Soit I = ]a, b[ où a et b sont deux éléments de R.
Si une fonction f : ]a, b[ → R est monotone alors elle admet une limite à droite en a
et une limite à gauche en b.
De plus :
• Si f est croissante et majorée, alors elle admet une limite finie à gauche en b.

Cette limite est sa borne supérieure : lim
x→b

<

f(x) = Sup
x∈I

(f(x))

• Si f est croissante non majorée alors elle tend vers +∞ en b.
• Si f est croissante et minorée, alors elle admet une limite finie à droite en a.

Cette limite est sa borne inférieure : lim
x→a

>

f(x) = Inf
x∈I

(f(x))

• Si f est croissante non minorée alors elle tend vers −∞ en a.

Exercice. Compléter le théorème en ajoutant les cas où f est décroissante.

Notation
On note, sous réserve d’existence :

Sup
I

f = Sup
x∈I

(f(x)) = Sup {f(x) | x ∈ I} = Sup f(I)

et Inf
I

f = Inf
x∈I

(f(x)) = Inf {f(x) | x ∈ I} = Inf f(I)

En d’autres termes, la borne supérieure d’une fonction f sur une partie D de R est la
borne supérieure de la partie f(D), et de même pour la borne inférieure.

C. Lien avec les suites
Remarque. Soit (un) une suite incluse dans l’intervalle I. Si (un) admet une limite ℓ,
alors ℓ ∈ I. En effet, si on a a < un < b pour tout n alors a ⩽ lim un ⩽ b.

Théorème (composition de limites)

Soit f : I → R une fonction, (un) une suite incluse dans I. Alors :
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Corollaire
Soit f : I → R une fonction, a un point de I. Si f est continue en a alors :

Remarque. Si f est continue et (un) converge vers un point de I alors :

lim f(un) = f(lim un)

Démonstration.

Exemple 1. Soit un = n
n+1 et f(x) = ⌊x⌋. Justifier que la suite (f(un)) converge et

donner sa limite.
Exemple 2. Démontrer que la fonction sinus n’admet pas de limite en +∞.
Exemple 3 : suites récurrentes. Soit f : R → R une fonction continue, et (un) une
suite définie par la donnée de u0 et la relation de récurrence :

∀n ∈ N un+1 = f(un)

On suppose que la suite (un) converge vers un réel ℓ.
Alors ℓ est un point fixe de f , i.e., f(ℓ) = ℓ.
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Théorème (Caractérisation séquentielle de la limite)

Soit f : I → R une fonction. Soit a ∈ I et ℓ ∈ R. Les deux propositions suivantes sont
équivalentes :
(i) lim

x→a
f(x) = ℓ

(ii) Pour toute suite (un) d’éléments de I convergeant vers a, la suite ((f(un)) converge
vers ℓ :

∀(un) ∈ IN un → a =⇒ f(un) → ℓ

Démonstration. On sait déjà, grâce à la composition des limites, que la proposition (i)
implique la proposition (ii).
On démontre la réciproque par contraposée, en prouvant que si la proposition (i) est
fausse alors la proposition (ii) est fausse.
Supposons que f n’admet pas ℓ pour limite en a. Ceci signifie qu’il existe un voisinage Vℓ

de ℓ tel que pour tout voisinage Va de a, f(Va ∩ I) n’est pas inclus dans Vℓ.

Soit n ∈ N∗. On note Va =


[
a − 1

n
, a + 1

n

]
si a ∈ R

[n, +∞[ si a = +∞
]−∞, −n] si a = −∞

Comme f(Va ∩ I) n’est pas inclus dans Vℓ alors il existe un ∈ Va ∩ I tel que f(un)
n’appartient pas à Vℓ.
La suite (un)n∈N∗ ainsi construite est une suite d’éléments de I. Elle converge vers a car
selon les cas :

∀n ∈ N∗

 a − 1
n
⩽ un ⩽ a + 1

n
si a ∈ R

n ⩽ un si a = +∞
un ⩽ −n si a = −∞

Le théorème d’encadrement ou l’un des théorèmes de comparaison montre que la suite
(un) converge vers a.
Or aucun f(un) n’appartient au voisinage Vℓ de ℓ. Il est donc impossible que la suite
(f(un))n∈N∗ tende vers ℓ, sinon à partir d’un certain rang tous ses termes seraient dans
ce voisinage.
Ceci montre que le point (ii) est faux si on suppose que le point (i) est faux.
Finalement les propositions (i) et (ii) sont équivalentes. □

Corollaire (Caractérisation séquentielle de la continuité)
Soit f : I → R une fonction et a un point de I. Les deux propositions suivantes sont
équivalentes :
(i) f est continue en a

(ii) Pour toute suite (un) d’éléments de I convergeant vers a, la suite (f(un)) converge
vers f(a).

Démonstration. Ce corollaire est conséquence du théorème précédent, dans le cas où a
appartient à I et ℓ = f(a). □
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D. Relations de comparaison

Définitions
Soit f et g deux fonctions de I dans R, et a un élément de I. On dit que :
• f est négligeable devant g au voisinage de a s’il existe une fonction ε admettant 0

pour limite en a telle qu’au voisinage de a : f(x) = ε(x)g(x).
• f est équivalente à g au voisinage de a s’il existe une fonction h admettant 1 pour

limite en a telle qu’au voisinage de a : f(x) = h(x)g(x).
• f est dominée par g au voisinage de a s’il existe une fonction M bornée au voisinage

de a telle qu’au voisinage de a : f(x) = M(x)g(x).

Notations
On note dans ces trois situations respectivement :

f(x) =
(x→a)

o(g(x)) f(x) ∼
x→a

g(x) f(x) =
(x→a)

O(g(x))

ou juste : f =
(a)

o(g) f ∼
a

g f =
(a)

O(g)

ou encore : f = oa(g) f ∼
a

g f = Oa(g)

Remarque.
Les définition peuvent s’écrire :
• f =

(a)
o(g) ⇐⇒ f(x) = ε(x)g(x) où lim

x→a
ε(x) = 0

• f ∼
a

g ⇐⇒ f(x) = h(x)g(x) où lim
x→a

h(x) = 1

• f =
(a)

O(g) ⇐⇒ f(x) = M(x)g(x) où x 7→ M(x) est bornée au voisinage de a.

Les fonctions ε, h, M sont définies au voisinage de a, et les égalités f = εg, f = hg,
f = Mg sont valides au voisinage de a.
Si g ne s’annule pas au voisinage de a sauf éventuellement en a alors :
• f =

(a)
o(g) ⇐⇒ f

g
−−→
x→a

0

• f ∼
a

g ⇐⇒ f
g

−−→
x→a

1

• f =
(a)

O(g) ⇐⇒ f
g

est bornée au voisinage de a.

Les propositions pour les suites restent valables, par exemple :

Propositions
• Si f ∼

a
g alors f = g + oa(g), et réciproquement.

• Si f ∼
a

g alors f et g sont de même signe au voisinage de a.
• La relation ∼

a
est une relation d’équivalence sur l’ensemble des fonctions définies au

voisinage de a.
• Si f ⩽ g ⩽ h au voisinage de a et f ∼

a
h alors f ∼

a
g ∼

a
h.
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III. Continuité

A. Opérations
Dans cette partie I désigne une partie quelconque de R.

Définition
Une fonction f : I → R est dite continue ou continue sur I si elle est continue en tout
point de I.

Notation
L’ensemble des fonctions continues de I dans R est noté C(I), ou C0(I), ou C0(I,R).

Remarque. Si f : I → R est continue et I ′ est une partie de I, alors la restriction de f
à I ′ est continue sur I ′.

Proposition

Soit f et g deux fonctions continues sur I et λ un réel.
• Les fonctions f + g, fg et λf sont continues sur I.
• Si la fonction g ne s’annule pas sur I, alors la fonction f

g
est continue sur I.

Proposition
Si f : I → R et g : J → R sont deux fonctions continues telles que f(I) ⊆ J , alors la
fonction g ◦ f est continue sur I.

Exemple. Si f et g sont deux fonctions continues sur I alors les fonctions Max (f, g) et
Min (f, g) sont continues sur I.

Démonstration. On vérifie que pour tout x ∈ I :

Max (f, g)(x) = f(x) + g(x) + |f(x) − g(x)|
2

et Min (f, g)(x) = f(x) + g(x) − |f(x) − g(x)|
2

Ainsi :

Max (f, g) = f + g + |f − g|
2 et Min (f, g) = f + g − |f − g|

2
Par sommes et composition, les fonctions Max (f, g) et Min (f, g) sont continues. □
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Chapitre A10. Limites et continuité III. Continuité

Théorème
Les fonctions polynomiales sont continues sur R, les fonctions exponentielles, loga-
rithmes, puissances, circulaires, circulaires inverses, hyperboliques, valeur absolue sont
continues sur leurs ensembles de définition.

Remarque. En particulier les fonctions x 7→ 1
x

et tangente sont continues.
Démonstration. La fonction IdR : x → x est continue. Par sommes et produits de fonctions
continues, les fonctions polynomiales sont continues.
La fonction logarithme népérien est continue car c’est une primitive (voir chapitre A10).
La fonction exponentielle est sa réciproque, donc elle est continue (voir théorème de la
bijection plus loin dans ce chapitre).
Par composition et quotient le cosinus (cos x = sin

(
x + π

2
)
) et la tangente sont continues

si le sinus l’est (voir ci-dessous pour le sinus).
On en déduit la continuité des fonctions trigonométriques réciproques par théorème de la
bijection.
Par composition, somme, produit, on démontre la continuité des autres fonctions loga-
rithmiques, des autres fonctions exponentielles, des fonctions puissances, et des fonctions
hyperboliques.
Comme |x| =

√
x2 alors par composition la fonction valeur absolue est continue. □

Démonstration de la continuité du sinus.
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B. Théorèmes
1. Valeurs intermédiaires

Théorème
Soit f : I → R une fonction continue sur un intervalle I. On suppose qu’il existe deux
réels a et b de I tels que f(a) ⩽ 0 et f(b) ⩾ 0. Alors il existe un réel c compris entre a
et b tel que f(c) = 0.

Démonstration.
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Théorème des valeurs intermédiaires
Soit f une fonction continue sur un intervalle I. Soit a et b deux points de I, tels que
a < b. Alors pour tout d compris entre f(a) et f(b) il existe c ∈ [a, b] tel que f(c) = d.

Démonstration.

Si f(a) ⩾ f(b), alors on utilise la fonction g : x 7→ d − f(x). □

▶▷ Exercice 4.

Corollaire
L’image d’un intervalle par une fonction continue est un intervalle.

Démonstration. Soit D une partie de R, f : D → R une fonction continue, I un intervalle
inclus dans D, et J = f(I).
On souhaite démontrer que J est un intervalle.
Soit y1 et y2 deux éléments de J . Comme J = f(I), alors il existe deux éléments x1 et x2
de I tels que f(x1) = y1 et f(x2) = y2.
Soit y0 un réel compris entre y1 et y2. D’après le théorème des valeurs intermédiaires, il
existe un réel x0 compris entre x1 et x2 tel que f(x0) = y0.
Ainsi x0 est compris entre x1 et x2, qui sont éléments de l’intervalle I. Par définition d’un
intervalle, x0 est élément de I. On a y0 = f(x0), donc y0 est élément de f(I), donc de J .
On a démontré que :

∀(y1, y2) ∈ J2 ∀y ∈ R (y1 ⩽ y ⩽ y2 =⇒ y ∈ J)

Ceci signifie que J est un intervalle. □

Exemple 4. Soit f : R → R une fonction continue admettant −∞ pour limite en −∞
et +∞ en +∞. Justifier que f est surjective, i.e., f(R) = R
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2. Image d’un segment

Définition
Un segment est un intervalle fermé borné, i.e., de la forme [a, b] où a et b sont des
réels.

Théorème des valeurs extrêmes
Une fonction continue sur un segment est bornée et atteint ses bornes.

Lemme
Soit f une fonction continue sur un segment [a, b], et soit (un) une suite d’éléments
de [a, b]. Si la suite (f(un)) admet une limite ℓ ∈ R alors il existe c ∈ [a, b] tel que
f(c) = ℓ.
En particulier la limite ℓ est finie.

Démonstration.
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Démonstration du théorème. Soit f une fonction continue sur un segment [a, b].
1. Montrons que f est bornée sur [a, b].
Supposons que f n’est pas majorée. On en déduit :

∀n ∈ N ∃un ∈ [a, b] f(un) ⩾ n

Le théorème de comparaison montre que la suite (f(un))n∈N tend vers +∞. Mais d’après
le lemme précédent la limite de (f(un)) doit être finie.
Cette contradiction montre que f([a, b]) est majorée.
On démontre de même que f([a, b]) est minorée, donc f([a, b]) est bornée.
2. Montrons que f atteint ses bornes.
Comme la partie f([a, b]) est non-vide et majorée alors d’après la propriété de la borne
supérieure elle admet une borne supérieure, que l’on note M . Alors M est la borne supé-
rieure de f sur [a, b] :

M = Sup f([a, b]) = Sup
[a,b]

f

Par propriété il existe une suite d’éléments de f([a, b]) convergeant vers M . Il existe donc
une suite (un) d’éléments de [a, b] telle que la suite (f(un)) converge vers M .
D’après le lemme précédent il existe c ∈ [a, b] tel que f(c) = M . Ceci montre que f atteint
sa borne supérieure.
On démontre de même que f atteint sa borne inférieure.
Finalement on a démontré que f est bornée sur [a, b] et atteint ses bornes. □

Corollaire
L’image d’un segment par une fonction continue est un segment.

Remarque. Ce résultat ne s’étend pas aux intervalles ouverts ou semi-ouverts.
Exemple. Si f est la fonction carré, alors l’image de l’intervalle ouvert ]−1, 1[ est l’inter-
valle [0, 1[, il n’est pas ouvert.
Démonstration. Soit f une fonction continue sur un segment [a, b].
Comme f est continue et [a, b] est un intervalle alors f([a, b]) est un intervalle par corollaire
du théorème des valeurs intermédiaires.
D’après le théorème des valeurs extrêmes f([a, b]) est borné.
Soit m et M les bornes respectivement inférieure et supérieure de f([a, b]).
Comme f atteint ses bornes alors celles-ci sont dans f([a, b]), et donc f([a, b]) = [m, M ].
Il s’agit bien d’un segment. □

▶▷ Exercice 5.
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Chapitre A10. Limites et continuité III. Continuité

3. Bijections

Proposition
Soit I un intervalle et f : I → R une fonction continue et injective.
Alors f est strictement monotone.

▶▷ Exercice 6.

Proposition

Soit I une partie de R. Si f : I → R est strictement monotone alors f est injective.

Démonstration. En effet si f est strictement monotone alors pour tous x et y dans I :

x ̸= y =⇒
ß

x < y
ou x > y

=⇒
ß

f(x) < f(y)
ou f(x) > f(y) =⇒ f(x) ̸= f(y)

Par contraposée on en déduit :

∀(x, y) ∈ I2 f(x) = f(y) =⇒ x = y

Ceci signifie exactement que f est injective. □

Théorème de la bijection
Soit I un intervalle et f : I → R une fonction continue et strictement monotone. Soit
J = f(I). Alors
(i) J est un intervalle.

(ii) f réalise une bijection de I dans J .
(iii) Sa réciproque f−1 : J → I est strictement monotone, de même sens que f .
(iv) f−1 est continue.

Démonstration.
(i) Comme I est un intervalle et f est continue alors par corollaire du théorème des

valeurs intermédiaires J est un intervalle.
(ii) Comme f est strictement monotone alors f est injective d’après la propriété précé-

dente.
Comme J = f(I), alors l’application f : I → J est surjective.
Ainsi f : I → J est une bijection.

On suppose dans la suite que f est croissante. Le cas où f est décroissante est similaire.
(iii) Soit y et y′ deux éléments de J tels que y < y′.

Comme f ◦ f−1 = IdJ alors : f(f−1(y)) < f(f−1(y′)).
Comme f est croissante alors : f−1(y) < f−1(y′).
Ainsi f−1 est strictement croissante.
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(iv) Soit y0 ∈ J . On démontre que f−1 est continue en y0, i.e., :

∀ε > 0 ∃η > 0 ∀y ∈ J |y − y0| ⩽ η =⇒
∣∣f−1(y) − f−1(y0)

∣∣ ⩽ ε

Soit x0 = f−1(y0) de sorte que f(x0) = y0.
Soit ε > 0. Comme f est strictement croissante et x0 − ε < x0 < x0 + ε alors :

f(x0 − ε) < f(x0) < f(x0 + ε)

Ceci montre que y0 ∈ ]f(x0 − ε), f(x0 + ε)[, donc il existe η > 0 tel que

[y0 − η, y0 + η] ⊆ ]f(x0 − ε), f(x0 + ε)[ (1)

On en déduit, pour tout y ∈ J :

|y − y0| ⩽ η ⇐⇒ y ∈ [y0 − η, y0 + η]
=⇒ y ∈ [f(x0 − ε), f(x0 + ε)] d’après (1)
⇐⇒ f(x0 − ε) ⩽ y ⩽ f(x0 + ε)
⇐⇒ x0 − ε ⩽ f−1(y) ⩽ x0 + ε par croissance de f−1

⇐⇒ − ε ⩽ f−1(y) − f−1(y0) ⩽ ε

⇐⇒
∣∣f−1(y) − f−1(y0)

∣∣ ⩽ ε

On a démontré :

∀ε > 0 ∃η > 0 ∀y ∈ J |y − y0| ⩽ η =⇒
∣∣f−1(y) − f−1(y0)

∣∣ ⩽ ε

Ainsi f−1 est continue en y0.
Ceci est valable pour tout y0 ∈ J donc f−1 est continue sur J . □

Remarque. De plus les courbes représentatives de f et de f−1 sont symétriques l’une de
l’autre par rapport à la première bissectrice des axes.
Exemple. La fonction ln : R∗

+ → R est continue, strictement croissante, de limites −∞
et +∞. Ainsi sa fonction réciproque, l’exponentielle, réalise une bijection de R dans R∗

+,
et elle est continue.
Exemples de détermination de J. Soit a, b ∈ R tels que a < b.
• Si f est croissante alors :

f([a, b]) = f(]a, b[) = f([a, b[) =

• Si f est décroissante alors :

f([a, b]) = f(]a, b]) = etc.
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IV. Fonctions complexes
On considère les fonctions de I dans C, où I est toujours un intervalle de R.
Exemple. f : R −→ C

t 7−→ eit

On n’a plus de notion de fonction croissante, décroissante, monotone, majorée, minorée,
pas plus que d’extrema.

Définition
Soit f : I → C une fonction. On définit les fonctions conjuguée de f , partie réelle de
f , partie imaginaire de f , module de f en posant pour tout t ∈ I :

f̄(t) = f(t) (Re f)(t) = Re(f(t)) (Im f)(t) = Im(f(t)) |f |(t) = |f(t)|

La fonction f̄ est à valeurs dans C, alors que les fonctions Re f , Im f et |f | sont des
fonctions de I dans R, donc des fonctions réelles.

Définition
Une fonction f : I → C est dite bornée si la fonction |f | : I → R est bornée.

Définition
Soit a un point de I. Une fonction f : I → C est dite continue en a si

∀ε > 0 ∃η > 0 ∀t ∈ I |t − a| ⩽ η =⇒ |f(t) − f(a)| ⩽ ε

Remarque. On conserve les notions de limites, limites à gauche et à droite, continuité à
gauche et à droite, négligeabilité, équivalence, domination.
Less théorèmes d’opérations sur les limites restent valables.
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Notation
On note C(I,C) ou C0(I,C) l’ensemble des fonctions de I dans C continues.

Proposition

Soit f : I → C une fonction, a un élément de I, ℓ un complexe.
(i) Si f admet ℓ pour limite en a alors f̄ admet ℓ̄ pour limite en a.

(ii) Si f est continue en a alors f̄ est continue en a.

Démonstration. (i) La fonction f admet ℓ pour limite en a si et seulement si

∀ε > 0 ∃η > 0 ∀t ∈ I |t − a| ⩽ η =⇒ ∥f(t) − ℓ| ⩽ ε

Comme
|f̄(t) − ℓ̄| = |f(t) − ℓ| = |f(t) − ℓ|

alors
∀ε > 0 ∃η > 0 ∀t ∈ I |t − a| ⩽ η =⇒ |f̄(t) − ℓ̄| ⩽ ε

Ceci montre que la fonction f̄ admet ℓ̄ pour limite en a.
(ii) D’après ce qui précède, si f admet f(a) pour limite en a alors f̄ admet f̄(a) pour
limite en a donc f̄ est continue en a. □

Théorème
Soit f : I → C une fonction, a un élément de I. Alors f est continue en a si et
seulement si les fonctions Re f et Im f sont continues en a.

Démonstration. Toute fonction complexe vérifie :

Re f = f + f̄

2 et Im f = f − f̄

2i

Si f est continue alors f̄ est continue d’après la proposition précédente, donc par combi-
naisons linéaires Re f et Im f sont continues.
Réciproquement, on sait que f = Re f + i Im f . Donc si les fonctions Re f et Im f sont
continues alors par combinaison linéaire f est continue. □

Exemple. La fonction f : R −→ C

t 7−→ eit

est continue sur R.

▶▷ Exercice 7.
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