Programme de colles Semaine 14 du 13 au 17 janvier 2025

Questions de cours

Sauf mention explicite il faut connaître l'énoncé et la démonstration.

- 1. La réciproque d'un isomorphisme est un isomorphisme.
- 2. Dans un groupe, tout élément est régulier.
- 3. Soit $f:(G,*)\to (G',*')$ un morphisme de groupes. Alors f(e)=e' et pour tout $x\in G:f(x^{-1})=f(x)^{-1}$.
- 4. Un morphisme de groupes est injectif si et seulement si son noyau est réduit à l'élément neutre.
- 5. Un corps est intègre.

Exercices

Chapitre B5. Matrices

- I. Définitions
- II. Systèmes linéaires
- III. Matrices carrées
- IV. Inversion des matrices et systèmes de Cramer

Chapitre A7. Suites numériques

- I. Généralités
- II. Suites classiques
- III. Limites
- IV. Théorèmes d'existence de limite

V. Suites extraites Hors programme
VI. Suites complexes Hors programme
VII. Relations de comparaison Hors programme

Programme prévisionnel de la semaine suivante

Chapitre A7 (Suites).

Chapitre B5. Matrices

Voir programme précédent

Chapitre A7. Suites

I. Généralités

Définition explicite, implicite ou par récurrence. Somme, produit, combinaison linéaire de suites. Suites constantes, croissantes, etc. Suites majorées, minorées, bornées, suites périodiques, stationnaires.

II. Suites classiques

Suites arithmétiques, géométriques, arithmético-géométrique, double-récurrentes.

III. Limites

Bornes, propriété de la borne supérieure et inférieure, maximum et minimum d'une partie.

Suites convergentes : définition. Unicité de la limite. Suites divergentes. Toute suite convergente est bornée. Opérations sur les limites. Compatibilité de la limite avec la relation d'ordre. Limites infinies.

IV. Théorèmes d'existence de limite

Théorèmes d'encadrement. Théorème de limite des suites monotones. Suites adjacentes, définition et théorème.

V. Suites extraites

Définition. Si $\varphi : \mathbb{N} \to \mathbb{N}$ est strictement croissante alors $\varphi(n) \geqslant n$ pour tout $n \in \mathbb{N}$. Si (u_n) admet une limite alors toute suite extraite de (u_n) admet la même limite. Si les suites extraites (u_{2n}) et (u_{2n+1}) convergent vers la même limite, alors (u_n) converge vers cette limite.

Théorème de Bolzano-Weierstrass. Valeurs d'adhérence : définition, propriété : un réel a est valeur d'adhérence d'une suite (u_n) si et seulement si il existe une suite extraite de (u_n) convergeant vers a.

VI. Suites complexes

Si (u_n) converge vers ℓ alors $(|u_n|)$ converge vers $|\ell|$, et (\bar{u}_n) converge vers $\bar{\ell}$. La suite (u_n) converge vers $\ell = a + ib$ si et seulement si les suites $(\text{Re}(u_n))$ et $(\text{Im}(u_n))$ convergent vers a et b respectivement.

Théorème de Bolzano-Weierstrass pour les suites complexes.

VII. Relations de comparaison

Définitions et propriétés : $u_n = o(v_n)$, $u_n \sim v_n$, $u_n = O(v_n)$. Réécriture des croissances comparées, en ajoutant $e^{\gamma n} = o(n!)$. Equivalents usuels : si (u_n) converge vers 0 alors $\ln(1+u_n) \sim u_n$, $e^{u_n} - 1 \sim u_n$ et $\sin(u_n) \sim u_n$.