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Corrigé du Devoir à la Maison no7

Exercice 1.
Comme f est un morphisme d’anneaux de R dans lui-même, alors :
(ma1) ∀(x, y) ∈ R2 f(x + y) = f(x) + f(y)
(ma2) ∀(x, y) ∈ R2 f(xy) = f(x)f(y)
(ma3) f(1) = 1

1. On démontre pour récurrence : ∀n ∈ N f(n) = n

Initialisation. La propriété (MA1) donne pour x = y = 0 : f(0) = f(0) + f(0).
Comme (R, +) est un groupe alors f(0) admet un opposé, que l’on peut ajouter à cette
égalité, et donc f(0) = 0.
Hérédité. Supposons que pour un n ∈ N : f(n) = n.
D’après la propriété (MA1) : f(n + 1) = f(n) + f(1)
On a admis que f(n) = n, et d’après la propriété (MA3) : f(1) = 1.
Donc f(n + 1) = n + 1, ce qui démontre l’hérédité.
Conclusion. Par récurrence : ∀n ∈ N f(n) = n

2. Soit n ∈ Z. On sait déjà que si n est positif alors f(n) = n.
Si n est négatif alors −n est positif, donc f(−n) = −n.
D’après la propriété (MA1) : f(n − n) = f(n) + f(−n)
Comme f(0) = 0 alors f(n) + f(−n) = 0, ce qui donne f(n) = −f(−n) = −(−n) = n.
On a démontré que pour tout n ∈ Z : f(n) = n.

3. Soit r ∈ Q. Alors il existe deux entiers p ∈ Z et q ∈ N∗ tels que r = p
q
.

Alors p = qr. D’après la propriété (MA2) : f(p) = f(q)f(r)
Comme p et q sont entiers alors f(p) = p et f(q) = q, donc p = qf(r).
Comme q est non-nul alors f(r) = p

q
, ce qui donne f(r) = r.

On a démontré que pour tout r ∈ Q : f(r) = r.
4. (a) Soit x ∈ R+. Alors

√
x est définie et x =

√
x

2.
D’après la propriété (MA2) : f(x) = f(

√
x)2.

Ceci montre que f(x) ⩾ 0.
Soit x et y deux réels tels que x ⩽ y. Alors y − x ⩾ 0, donc d’après ce qui précède
f(y − x) ⩾ 0.
D’après la propriété (MA2) : f(y − x) = f(y) − f(x).
Donc f(y) ⩾ f(x).
On a démontré que pour tout (x, y) ∈ R2, si x ⩽ y alors f(x) ⩽ f(y).
Ainsi f est croissante.
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(b) Soit x un réel et n ∈ N∗. L’intervalle
[
x − 1

n
, x
]

n’est pas réduit à un point, et Q
est dense dans R, donc il existe un rationnel rn dans cet intervalle.
Ce rationnel vérifie x − 1

n
⩽ rn ⩽ x, donc rn ⩽ x ⩽ rn + 1

n
.

(c) On sait que :
∀n ∈ N∗ x − 1

n
⩽ rn ⩽ x.

Comme (x − 1
n
) −−−−→

n→+∞
x alors par théorème d’encadrement rn −−−−→

n→+∞
x.

On sait que :
∀n ∈ N∗ rn ⩽ x ⩽ rn + 1

n
.

Comme f est croissante alors :

∀n ∈ N∗ f(rn) ⩽ f(x) ⩽ f(rn + 1
n

).

Comme rn et 1
n

sont rationnels alors f(rn) = rn et f(rn + 1
n
) = rn + 1

n
, donc :

∀n ∈ N rn ⩽ f(x) ⩽ rn + 1
n

.

Comme rn −−−−→
n→+∞

x alors par somme (rn + 1
n
) −−−−→

n→+∞
x et par théorème

d’encadrement : f(x) −−−−→
n→+∞

x.

Cette suite étant constante : f(x) = x.

On a démontré que : ∀x ∈ R f(x) = x.
Ceci signifie bien que f = IdR.

Finalement on a démontré que le seul endomorphisme d’anneau de (R, +, ×) est
l’identité de R.

5. Soit f : C −→ C

z 7−→ z̄.

Les propriétés de la coonjugaison montrent que :

∀(z1, z2) ∈ C2 f(z1 + z2) = f(z1) + f(z2) et f(z1z2) = f(z1)f(z2)

En effet z1 + z2 = z̄1 + z̄2 et z1z2 = z̄1 + z̄2.
De plus f(1) = 1̄ = 1, donc les propriétés (MA1), (MA2) et (MA3) sont vérifiées.
Ainsi f est un endomorphisme de l’anneau (C, +, ×), et il est différent de l’identité,
par exemple car f(i) = −i ̸= i. Démontrons que f est le seul autre endomorphisme
d’anneau de C.
Soit f un endomorphisme d’anneau de (C, +, ×).
Sa restriction à R est alors un morphisme d’anneaux de (R, +, ×) dans (C, +, ×), car
les propriétés (MA1), (MA2) et (MA3) sont vérifiées lorsqu’on les restreint à R.
Toutes les démonstrations précédentes restent vraies, donc : ∀x ∈ R f(x) = x.
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Comme i2 = −1 alors la propriété (MA2) montre que f(i)2 = f(i2) = f(−1) = −1.
Ainsi f(i) = i ou f(i) = −i.
Soit z = x + iy un complexe. Les propriétés (MA1) et (MA2) donnent :

f(z) = f(x + iy) = f(x) + f(i)f(y) = x + f(i)y.

Ainsi f(z) = z si f(i) = i et f(z) = z̄ si f(i) = −i.
Donc f est l’identité de C ou la conjugaison.
Les applications z 7→ z et z 7→ z̄ étant des endomorphismes de (C, +, ×), il existe
exactement deux endomorphismes d’anneau de (C, +, ×).

Exercice 2.
1. Soit (un)n∈N une suite convergente, et soit ℓ sa limite.

Démontrons que la suite (un)n∈N est une suite de Cauchy.
Soit ε > 0. Alors ε

2 > 0. Comme la suite (un)n∈N converge vers ℓ alors :

∃N ∈ N ∀n ∈ N
(

n ⩾ N =⇒ |un − ℓ| ⩽ ε

2

)
Soit p et q deux entiers. D’après ce qui précède, si p ⩾ N et q ⩾ N alors :

|up − ℓ| ⩽ ε

2 et |uq − ℓ| ⩽ ε

2
D’après l’inégalité triangulaire :

|(up − ℓ) − (uq − ℓ)| ⩽ |up − ℓ| + |uq − ℓ|

On en déduit :
|up − uq| ⩽

ε

2 + ε

2 = ε

On a démontré que :

∀ε > 0 ∃N ∈ N ∀(p, q) ∈ N (p ⩾ N et q ⩾ N) =⇒ |up − uq| ⩽ ε

La suite (un)n∈N est bien une suite de Cauchy.
2. Soit (un) une suite de Cauchy. Pour ε = 1, comme ε > 0 alors :

∃N ∈ N ∀(p, q) ∈ N (p ⩾ N et q ⩾ N) =⇒ |up − uq| ⩽ 1

Si q = N alors q ⩾ N donc :

∀p ∈ N p ⩾ N =⇒ |up − uN | ⩽ 1
=⇒ uN − 1 ⩽ up ⩽ uN + 1

Tous les termes un de la suite pour n ⩾ N sont dans l’intervalle [uN − 1, uN + 1], donc
ils forment un ensemble borné.
Les termes pour 0 ⩽ n < N sont en nombre fini donc ils forment un ensemble borné
également.
L’union de deux ensembles bornés est un ensemble borné, donc la suite (un)n∈N est
bornée.
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3. Soit (un) une suite de Cauchy.
D’après la question précédente la suite (un) est bornée donc d’après le théorème de
Bolzano-Weierstrass elle admet une suite extraite convergente.
Notons (uφ(n)) une telle suite, c’est-à-dire que φ : N → N est une fonction strictement
croissante.
Soit ℓ la limite de la suite extraite (uφ(n)).
Démontrons que la suite (un) converge vers ℓ.
Soit ε > 0.
Alors ε

2 > 0. Comme la suite (un) est une suite de Cauchy alors :

∃N1 ∈ N ∀(p, q) ∈ N (p ⩾ N1 et q ⩾ N1) =⇒ |up − uq| ⩽
ε

2

Soit n un entier supérieur ou égal à N1. Comme la fonction φ : N → N est strictement
croissante alors par propriété φ(n) ⩾ n, et donc φ(n) ⩾ N1.
Comme n ⩾ N1 et φ(n) ⩾ N1 alors :

∣∣un − uφ(n)
∣∣ ⩽ ε

2 .
Comme la suite (uφ(n)) converge vers ℓ alors par définition de la convergence il existe
un entier N2 tel que :

∀n ∈ N n ⩾ N2 =⇒
∣∣uφ(n) − ℓ

∣∣ ⩽ ε

2

Soit N0 = Max {N1, N2}. Pour tout n ∈ N, si n ⩾ N0 alors n ⩾ N1 et n ⩾ N2 donc :∣∣un − uφ(n)
∣∣ ⩽ ε

2 et
∣∣uφ(n) − ℓ

∣∣ ⩽ ε

2

Par inégalité triangulaire :∣∣(un − uφ(n)) + (uφ(n) − ℓ)
∣∣ ⩽ ∣∣un − uφ(n)

∣∣ +
∣∣uφ(n) − ℓ

∣∣ ⩽ ε

2 + ε

2

Ceci donne : |un − ℓ| ⩽ ε

Nous avons démontré que pour tout ε > 0 il existe N0 ∈ N tel que :

∀n ∈ N n ⩾ N0 =⇒ |un − ℓ| ⩽ ε

Ceci signifie que la suite (un) converge vers ℓ.
Ainsi toute suite de Cauchy est convergente.
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4. D’après ce qui précède, pour démontrer que la suite (un) converge il suffit de démontrer
qu’elle est de Cauchy.
Soit deux entiers naturels p et q. On suppose que p ⩾ q. Par télescopage :

up − uq =
p−1∑
k=q

(uk+1 − uk).

Par inégalité triangulaire :

|up − uq| ⩽
p−1∑
k=q

|uk+1 − uk|.

Soit a un réel tel que : ∀n ∈ N |un+1 − un| ⩽ an. Alors :

|up − uq| ⩽
p−1∑
k=q

ak.

Comme a ̸= 1 alors :
p−1∑
k=q

ak = aq − ap

1 − a
= aq(1 − ap−q)

1 − a
.

Comme a ∈ [0, 1[ alors 1 − a > 0 et ap−q ⩾ 0, donc :

|up − uq| ⩽
aq

1 − a

Soit ε > 0. Alors (1 − a)ε > 0, car a < 1. Comme a ∈ [0, 1[ alors la suite (aq)q∈N
converge vers 0, donc il existe N ∈ N tel que :

∀q ∈ N q ⩾ N =⇒ |aq| ⩽ (1 − a)ε.

Ceci montre que :

∀(p, q) ∈ N2 p ⩾ q ⩾ N =⇒ |up − uq| ⩽ ε.

Comme |up − uq| = |uq − up| alors en intervertissant p et q on obtient :

∀(p, q) ∈ N2 q ⩾ p ⩾ N =⇒ |up − uq| ⩽ ε.

On a démontré que pour tout ε > 0 il existe un entier N tel que :

∀(p, q) ∈ N2 (p ⩾ N et q ⩾ N) =⇒ |up − uq| ⩽ ε.

La suite (un) est donc de Cauchy, et ainsi elle converge.
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