TD. B4 Arithmétique

Exercices de cours

1 Soit a et b deux entiers avec b strictement posi-

Démontrer que b divise a si et seulement si le reste de la division euclidienne de a par b est nul.

(2) Soit a et b deux entiers avec b non-nul, et q le quotient de la division euclidienne de a par b. Démontrer que $q = \left| \frac{a}{b} \right|$.

(3) Écrire une fonction Python implémentant l'algorithme d'Euclide pour le calcul du PGCD.

(4) Déterminer des coefficients de Bézout pour (a, b)valant (6,7), (6,8), (7,100) et (49,175).

- (5) Soit a et b deux entiers.
- a. Déterminer $a\mathbb{Z} \cap b\mathbb{Z}$.
- b. Déterminer l'ensemble de toutes les sommes possibles d'un élément de $a\mathbb{Z}$ et d'un élément de $b\mathbb{Z}$: $a\mathbb{Z} + b\mathbb{Z} = \{ m + n \mid m \in a\mathbb{Z} \text{ et } n \in b\mathbb{Z} \}$

(6) Soit a, b, n trois entiers. En utilisant le théorème de Bézout, démontrer que :

- a. Si a et b sont premiers entre eux et divisent n, alors ab divise n.
- b. Si a et b sont premiers avec n alors ab est premier
- 7 Déterminer tous les couples $(u, v) \in \mathbb{Z}^2$ tels que : a. 24u + 15v = 20b. 24u + 15v = 21.
- (8) Donner la liste des nombres premiers inférieurs

à 100. (9) Décomposer 60, 375, 389, 899, 1001, 2016,

2 020, et 777 000 en produit de facteurs premiers.

(10) Donner la décomposition en facteurs premiers $\overline{\text{de}} 792000.$

En déduire le nombre de diviseurs positifs de ce nombre.

(11) Calculer la valeur exacte du PGCD de :

$$\begin{array}{cc} 15 \times 39^2 \times 77^3 \times 101 \times 10^4 \\ \text{et} & 22^2 \times 26^3 \times 91^3 \times 102 \times 10^3. \end{array}$$

(12) Le but de cet exercice est de démontrer qu'un entier naturel est différence de deux carrés si et seulement si il n'est pas congru à 2 modulo 4.

a. Quels sont les carrés modulo 4? En déduire le sens direct.

b. Calculer $(n+1)^2 - n^2$ et $(n+1)^2 - (n-1)^2$ et en déduire le sens indirect.

c. Écrire 27, 28 et 29 comme différence de deux car-

(13) Résoudre dans \mathbb{Z} les équations suivantes :

a. $9x \equiv 7 \ [20]$

b. $4x \equiv 5$ [13]

c. $6x \equiv 5$ [14]

d. $x^2 + 5x \equiv 3$ [11]

(14) Démontrer que $\log 3$ et $\frac{\ln 8}{\ln 7}$ sont irrationnels.

_ Travaux dirigés _

1 Décomposer en produit de facteurs premiers :

$$a = 10!$$
 $b = 20!$ $c = \begin{pmatrix} 20 \\ 7 \end{pmatrix}$ $d = \begin{pmatrix} 50 \\ 12 \end{pmatrix}$

2 Décomposer en produit de facteurs premiers les entiers a = 2613600 et b = 4306500. Calculer ensuite leur PGCD, et la décomposition en facteurs premier de leur PPCM.

3 Donner des coefficients de Bézout pour les nuplets:

a. (24, 35)

b. (55, 143)

c. (101, 120)

d. (6, 10, 15) e. (60, 70, 105) f. (10n + 3, 7n + 2)

4 Démontrer que si p est un nombre premier strictement supérieur à 3 alors $p^2 - 1$ est multiple de 24.

5 Démontrer que pour tout $n \in \mathbb{N}$:

a. $n^3 - n$ est multiple de 6.

b. $n^3 + (n+1)^3 + (n+2)^3$ est un multiple de 9.

6 Soit n un entier naturel, et $a_p \dots a_0$ son écriture en base 10, c'est-à-dire que les a_i sont des entiers

tels que $0 \leqslant a_i \leqslant 9$ et $n = \sum_{i=1}^{n} a_i 10^i$.

Démontrer que :

a. n est multiple de 9 si et seulement si la somme de ses chiffres est multiple de 9.

b. n est multiple de 11 si et seulement si la somme alternée de ses chiffres $\sum_{i=0}^{p} (-1)^{i} a_{i}$ est multiple

7 Soit n un entier naturel, q et r le quotient et le $\overline{\text{reste}}$ de la division euclidienne de n par 10.

- a. Démontrer que n est multiple de 7 si et seulement si q - 2r est multiple de 7.
- b. En déduire un algorithme pour déterminer mentalement si un entier est multiple de 7.

Appliquer cet algorithme aux entiers 84, 173, 343, 526, 1001, 4345, 5292, 12915, 999999 et 1 111 111.

8 Résoudre les équations suivantes, où les inconnues sont des entiers relatifs.

- a. 3m + 7n = 0
- b. 3m + 7n = 32
- 15m + 11n = 3
- d. 6m + 15n = 40
- 6m + 15n = 39
- f. 28m + 66n = 40
- 2m + 3n + 5p = 0
- h. 2m + 3n + 5p = 1

9 Résoudre les équations et systèmes d'équations suivants, d'inconnues entières.

- a. $7n \equiv 16 [18]$
- b. $11n \equiv 7 [27]$
- d. $\begin{cases} 3n \equiv 7 [10] \\ 5n \equiv 1 [9] \end{cases}$
- e. $\begin{cases} n \equiv 1 \, [3] \\ n \equiv 2 \, [7] \\ n \equiv 3 \, [8] \end{cases}$ f. $\begin{cases} 2m + 3n \equiv 1 \, [17] \\ 11m + 13n \equiv 5 \, [17] \end{cases}$

10 Résoudre les équations suivantes, où l'inconnue est un entier relatif.

- a. $n^2 + 4n + 6 \equiv 0$ [11] b. $n^2 n + 3 \equiv 0$
- c. $3n^2 + 5n + 6 \equiv 0$ [13] d. $3n^2 + 5n + 10 \equiv 0$ [13]
- e. $n^2 + 3n 1 \equiv 0$ [15] f. $n^2 n 12 \equiv 0$ [15]

11 Déterminer tous les couples d'entiers naturels $\overline{(m,n)}$ tels que :

- $m \wedge n = 5$ et $m \vee n = 60$
- $m \wedge n = 6$ et m + n = 72
- $m \lor n = 2100$ et m + n = 159
- $m \lor n = (m \land n)^2$ et m + n = 70

12 Soit a et b deux entiers tels que 0 < b < a.

- a. Démontrer que pour tout $n \in \mathbb{N}$: a-b divise $a^n - b^n$.
- b. Démontrer que pour tout $(m,n) \in \mathbb{N}^2$: si m divise n alors $a^m - b^m$ divise $a^n - b^n$.
- c. Soit a et n deux entiers tels que $a \ge 2$ et $n \ge 2$. Démontrer que si $a^n - 1$ est premier, alors a = 2et n est premier.
- d. Pour tout p premier on note $M_p = 2^p 1$.

Donner quatre nombres M_p premiers.

Ces nombres sont appelés nombres premiers de Mersenne.

13 Pour tout entier p premier on note $M_p = 2^p - 1$. $\overline{\mathrm{Un}}$ entier m est dit parfait si la somme de ses diviseurs autres que lui-même est égale à m.

a. Démontrer que si M_p est premier, alors $2^{p-1}M_p$ est parfait.

On démontre dans la suite une réciproque, due à Euler : tout nombre parfait pair est de la forme $2^{p-1}M_p$ où p et M_p sont premiers.

Soit m un nombre parfait pair.

- b. Justifier qu'il existe $k \in \mathbb{N}^*$ et $u \in \mathbb{N}$ impair tels que $m = 2^k u$.
- c. Soit d_1, \ldots, d_r les diviseurs de u et σ leur somme. Démontrer que $2m = (2^{k+1} - 1)\sigma$.
- d. Démontrer qu'il existe un entier v tel que u = $(2^{k+1}-1)v$.
- e. Justifier que si v > 1 alors $\sigma \ge 1 + v + u$. En déduire une contradiction.
- f. Conclure.

14 Soit a, b, n trois entiers avec n non-nul. Démontrer que si $a \equiv b[n]$ alors $a^n \equiv b^n[n^2]$.

15 Pour tout $n \in \mathbb{N}$ on note $u_n = 2^n - 1$.

- a. Soit $(m,n) \in \mathbb{N}^*$. Démontrer que si m divise n alors u_m divise u_n .
- b. Soit a et b deux entiers avec a > b > 0, et soit r le reste de la division euclidienne de a par b.

Démontrer que u_r est le reste de la division euclidienne de u_a par u_b .

En déduire que $u_a \wedge u_b = u_b \wedge u_r$.

- c. Déterminer $u_a \wedge u_b$.
- **16** Soit a et b deux entiers naturels non-nuls, q et r le quotient et le reste de la division euclidienne de a-1 par b.

Déterminer, pour tout $n \in \mathbb{N}^*$, le quotient et le reste de la division euclidienne de $ab^n - 1$ par b^{n+1} .

17 Soit a, b, k trois entiers non-nuls.

Démontrer que :

 $ka \wedge kb = k(a \wedge b)$ et $ka \vee kb = k(a \vee b)$

- 18 Soit a, b, n entiers naturels, avec n > 0.
- a. Démontrer que si a^n divise b^n alors a divise b.
- b. Démontrer que pour tout $n \in \mathbb{N}$:

$$(a \wedge b)^n = a^n \wedge b^n$$
 et $(a \vee b)^n = a^n \vee b^n$

- 19 a. Par combien de zéros se termine 1000!?
- b. Soit n un entier naturel et p un nombre premier. Démontrer que :

$$v_p(n!) = \sum_{k=1}^{\lfloor \log_p(n) \rfloor} \lfloor \frac{n}{p^k} \rfloor$$

20 Résoudre les équations suivantes, d'inconnues $(m,n) \in \mathbb{N}^2$.

a.
$$m^2 = n^2 + 1$$

b.
$$m^2 = n^2 + 6$$

c.
$$m^2 = n^2 + 7$$

d.
$$m^2 = n^2 + 40$$

e.
$$3^m + 1 = n^2$$

f.
$$3^m - 1 = n^2$$

g.
$$m^3 + m = n^2$$

h.
$$m^3 - m = n^2$$

i.
$$m^3 = n^3 + 218$$

j.
$$m^3 = n^3 + 999$$

21 Soit a et b deux entiers naturels strictement supérieurs à 1.

Démontrer que si a et b sont premiers entre eux alors $\frac{\ln a}{\ln b}$ est irrationnel.

22 Démontrer que l'équation $x^3 + x = 1$ admet une et une seule solution dans \mathbb{R} , puis que cette solution est irrationnelle.

23

- a. Soit x un réel et r un rationnel. Démontrer que si x + r et irrationnel alors x est irrationnel, et si rx est irrationnel alors x est irrationnel.
- b. Soit x un réel. Démontrer que s'il existe $n \in \mathbb{N}^*$ tel que x^n est irrationnel alors x est irrationnel.
- c. Soit p un nombre premier. Démontrer que \sqrt{p} est irrationnel.
- d. Soit n un entier naturel. Démontrer que \sqrt{n} est entier ou irrationnel.
- e. Démontrer que $\sqrt{2} + \sqrt{3}$ et $\sqrt[3]{2} + \sqrt[3]{3}$ sont irrationnels.
- f. Démontrer que $\sqrt{2} + \sqrt{3} + \sqrt{5}$ est irrationnel.
- g. Démontrer que $\sqrt{2} + \sqrt[3]{2}$ est irrationnel.