Corrigé du Devoir Surveillé n°3

Exercice 1. (7 points)

1. (1 point) La fonction $f: x \mapsto \arccos x + \arcsin\left(1 - \frac{x}{2}\right)$ est définie pour tout réel x tel que $-1 \leqslant x \leqslant 1$ et $-1 \leqslant 1 - \frac{x}{2} \leqslant 1$, ce qui donne $0 \leqslant x \leqslant 1$.

Donc la fonction f est définie sur l'intervalle [0, 1].

2. (2 points) On calcule $f(0) = \pi$ et $f(1) = \frac{\pi}{6}$.

La fonction f est continue, par composition et somme de fonctions continues.

Comme $\frac{\pi}{6} \leqslant \frac{5\pi}{6} \leqslant \pi$ alors d'après le théorème des valeurs intermédiaires il existe $x \in [0,1]$ tel que $f(x) = \frac{5\pi}{6}$.

Ceci signifie que l'équation (\star) admet au moins une solution.

3. (2 points) On sait que pour tout $x \in [-1, 1]$: $\sin(\arcsin x) = x$, $\cos(\arccos x) = x$, et $\sin(\arccos x) = \cos(\arcsin x) = \sqrt{1 - x^2}$.

Soit $x \in [0, 1]$. On calcule :

$$\sin(f(x)) = \sqrt{1 - x^2} \sqrt{1 - \left(1 - \frac{x}{2}\right)^2} + x\left(1 - \frac{x}{2}\right)$$
$$= \sqrt{1 - x^2} \frac{1}{2} \sqrt{4x - x^2} + \frac{1}{2}x(2 - x)$$

Si x est solution de l'équation (\star) alors par application de la fonction sinus :

$$\frac{1}{2}\sqrt{1-x^2}\sqrt{4x-x^2} + \frac{1}{2}x(2-x) = \frac{1}{2} \tag{1}$$

Cette dernière équation équivaut à :

$$\sqrt{(1-x)(1+x)}\sqrt{4x-x^2} = 1 - 2x + x^2 = (1-x)^2$$

Comme $f(1) = \pi \neq \frac{5\pi}{6}$ alors 1 n'est pas solution de l'équation (\star) , et donc $x \neq 1$, puis :

$$(1) \qquad \Longleftrightarrow \qquad \sqrt{1+x}\sqrt{4x-x^2} = (1-x)\sqrt{1-x}$$

Il s'agit de l'équation attendue.

4. (2 points) Tous les termes sont positifs donc :

(1)
$$\iff$$
 $(1+x)(4x-x^2) = (1-x)^3$

En développant :

(1)
$$\iff$$
 $4x + 4x^2 - x^2 - x^3 = 1 - 3x + 3x^2 - x^3$
 \iff $7x = 1$ \iff $x = \frac{1}{7}$

Ainsi $\frac{1}{7}$ est la seule solution possible de l'équation. Comme celle-ci admet au moins une solution alors $\frac{1}{7}$ est bien solution, et donc l'ensemble des solutions de l'équation (\star) est $\mathcal{S} = \left\{\frac{1}{7}\right\}$.

Exercice 2. (4 points)

1. (3 points) Supposons que f est injective.

Soit $x \in E$. Comme $f \circ f = f$ alors : f(f(x)) = f(x).

Comme f est injective alors : f(x) = x.

Ceci montre que x admet lui-même pour antécédent.

Ceci étant vrai pour tout $x \in E$, la fonction f est sujective.

Supposons que f est surjective.

Soit x et x' deux éléments de E tels que f(x) = f(x').

Comme f est surjective alors il existe $(y, y') \in E^2$ tel que f(y) = x et f(y') = x'.

Comme f(x) = f(x') alors $f \circ f(y) = f \circ f(y')$. Or $f \circ f = f$ donc f(y) = f(y'), ce qui donne x = x'.

On a démontré que pour tout $(x, x') \in E^2$, si f(x) = f(x') alors x = x'.

Ceci montre que f est injective.

Finalement f est injective si et seulement si f est surjective.

2. (1 point) Supposons que f est injective ou surjective.

D'après la question précédente f est alors injective et surjective, donc bijective.

Elle admet donc une fonction réciproque f^{-1} .

Par composition, comme $f \circ f = f$ alors $f \circ f \circ f^{-1} = f \circ f^{-1}$, ce qui donne $f = \mathrm{Id}_E$.

Donc si f est injective ou surjective alors f est l'identité de E.

Problème 1. (13 points)

1. (a) (2 points) Pour tout entier $n \ge 2$:

$$u_{n+1} - u_n = S_{n+1} - S_n - \ln(n+1) + \ln(n) = \frac{1}{n} - \ln\left(1 + \frac{1}{n}\right)$$

Par concavité du logarithme : $u_{n+1} - u_n \ge 0$.

La suite (u_n) est donc croissante.

De même, pour tout entier $n \ge 2$:

$$v_{n+1} - v_n = S_{n+1} - S_n - \ln(n) + \ln(n-1) = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right) = \ln\left(1 - \frac{1}{n}\right) - \left(-\frac{1}{n}\right)$$

Par concavité du logarithme : $v_{n+1} - v_n \leq 0$

La suite (v_n) est donc décroissante.

(b) (2 points) Pour tout entier $n \ge 2$:

$$v_n - u_n = S_n - S_n - \ln(n-1) + \ln(n) = -\ln\left(1 - \frac{1}{n}\right) \ge 0$$

Ceci montre que $u_n \leq v_n$.

Comme la suite (v_n) est décroissante et $n \ge 2$ alors $v_n \le v_2$, puis par transitivité : $u_n \le v_2 = S_2$.

- (c) $(1 \ point)$ La suite (u_n) est croissante majorée par S_2 , donc par théorème de la limite monotone elle est convergente.
- (d) (1 point) Comme la suite (u_n) converge vers γ , alors :

$$S_n - \ln n - \gamma \xrightarrow[n \to +\infty]{} 0$$

En divisant par $\ln n$:

$$\frac{S_n}{\ln n} - 1 - \frac{\gamma}{\ln n} \xrightarrow[n \to +\infty]{} 0$$

Comme $\frac{\gamma}{\ln n} \xrightarrow[n \to +\infty]{} 0$ alors:

$$\frac{S_n}{\ln n} \xrightarrow[n \to +\infty]{} 1.$$

Ceci montre bien que $S_n \sim \ln n$.

2. (a) (1 point) On définit la fonction $f: x \mapsto x + \frac{1}{x}$, itératrice de la suite récurrente $(u_n)_{n \in \mathbb{N}}$.

Cette fonction est définie sur \mathbb{R}^* , et l'intervalle \mathbb{R}_+^* est stable par f.

En effet, si x > 0 alors $x + \frac{1}{x} > 0$ donc f(x) > 0.

La suite (u_n) est définie par $u_0 \in \mathbb{R}_+^*$ et : $\forall n \in \mathbb{N} \quad u_{n+1} = f(u_n)$.

Par propriété, comme \mathbb{R}_+^* est stable par f alors la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et incluse dans \mathbb{R}_+^* , donc strictement positive.

(b) (2 points) La suite (u_n) est strictement positive donc

$$\forall n \in \mathbb{N} \qquad u_{n+1} - u_n = \frac{1}{u_n} > 0$$

Ceci montre que la suite (u_n) est strictement croissante.

Par théorème une suite monotone admet une limite, donc la suite (u_n) admet une limite.

Supposons que cette limite est finie et notons-la ℓ .

On sait que

$$\forall n \in \mathbb{N} \qquad u_{n+1} = u_n + \frac{1}{u_n} \tag{1}$$

Par décalage u_{n+1} converge vers ℓ . Par soustraction $\frac{1}{u_n}$ converge vers 0, ce qui veut dire que la suite (u_n) diverge vers $+\infty$, alors qu'on a supposé qu'elle converge vers un réel ℓ .

Cette contradiction montre que la limite de la suite (u_n) n'est pas finie.

Comme (u_n) est croissante alors cette limite est $+\infty$.

(c) (1 point) Pour tout $n \in \mathbb{N}$ on note \mathcal{P}_n la propriété : $u_n^2 \geqslant 2n + u_0^2$

On démontre par récurrence que cette propriété est vraie pour tout $n \in \mathbb{N}$.

<u>Initialisation</u>. La propriété \mathcal{P}_0 s'écrit $u_0^2 \geqslant u_0^2$, elle est donc vraie.

<u>Hérédité.</u> Supposons que pour un certain $n \in \mathbb{N}$ la propriété \mathcal{P}_n est vraie.

On sait que $u_{n+1}=u_n+\frac{1}{u_n}$ donc $u_{n+1}^2=u_n^2+2+\frac{1}{u_n^2}$. Comme $\frac{1}{u_n^2}>0$ alors en utilisant la propriété \mathcal{P}_n :

$$u_{n+1}^2 \ge u_n^2 + 2 \ge 2n + u_0^2 + 2 = 2(n+1) + u_0^2$$

Ceci montre que la propriété \mathcal{P}_{n+1} est vraie.

<u>Conclusion</u>. La propriété \mathcal{P}_n est vraie au rang 0 et elle est héréditaire, donc par récurrence elle est vraie pour tout $n \in \mathbb{N}$.

(d) (1 point) Pour tout $n \in \mathbb{N}^*$ on note \mathcal{P}_n la propriété : $u_n^2 \leqslant 2n + \frac{1}{2}S_n + u_1^2$

On démontre par récurrence que cette propriété est vraie pour tout $n \in \mathbb{N}^*$.

Initialisation. La propriété \mathcal{P}_1 s'écrit $u_1^2 \leqslant \frac{1}{2}S_1 + u_1^2$.

Or $S_1 = 0$ car c'est une somme vide, et ainsi la propriété \mathcal{P}_1 est vraie.

<u>Hérédité.</u> Supposons que pour un certain $n \in \mathbb{N}^*$ la propriété \mathcal{P}_n est vraie.

On a démontré ci-dessus que pour tout $n \in \mathbb{N}$: $u_n^2 \geqslant 2n + u_0^2$

Ceci montre que $u_n^2 \geqslant 2n$ donc $\frac{1}{u_n^2} \leqslant \frac{1}{2n}$. On en déduit :

$$u_{n+1}^2 = \left(u_n + \frac{1}{u_n}\right)^2 = u_n^2 + 2 + \frac{1}{u_n^2} \leqslant u_n^2 + 2 + \frac{1}{2n}$$

Comme la propriété \mathcal{P}_n est supposée vraie :

$$u_n^2 \le 2n + \frac{1}{2}S_n + u_1^2 + 2 + \frac{1}{2n} = 2(n+1) + \frac{1}{2}\left(S_n + \frac{1}{n}\right) + u_1^2$$

Or

$$S_n + \frac{1}{n} = \sum_{k=1}^{n-1} \frac{1}{k} + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k} = S_{n+1}$$

Ceci montre que la propriété \mathcal{P}_{n+1} est vraie.

<u>Conclusion</u>. La propriété \mathcal{P}_n est vraie au rang 1 et elle est héréditaire, donc par récurrence elle est vraie pour tout $n \in \mathbb{N}^*$.

(e) (2 points) Les deux questions précédentes montrent que :

$$\forall n \in \mathbb{N}^*$$
 $2n + u_0^2 \leqslant u_n^2 \leqslant 2n + \frac{1}{2}S_n + u_1^2$

En divisant par 2n:

$$\forall n \in \mathbb{N}^* \qquad 1 + \frac{u_0^2}{2n} \leqslant \frac{u_n^2}{2n} \leqslant 1 + \frac{1}{4n} S_n + \frac{u_1^2}{2n} \tag{2}$$

Par croissances comparées $\ln n = o(n)$ donc la suite $\left(\frac{\ln n}{n}\right)$ converge vers 0.

D'après la partie A : $S_n \sim \ln n$. Donc $\frac{S_n}{n} \sim \frac{\ln n}{n} \xrightarrow[n \to +\infty]{} 0$. On en déduit :

$$\lim \left(1 + \frac{u_0^2}{2n}\right) = \lim \left(1 + \frac{1}{4n}S_n + \frac{u_1^2}{2n}\right) = 1$$

On applique le théorème d'encadrement à l'inégalité (2), il montre que la suite $\left(\frac{u_n^2}{2n}\right)$ converge vers 1.

La suite $\frac{u_n}{\sqrt{2n}}$ est positive et son carré converge vers 1 donc elle converge vers 1.

Ceci montre que (u_n) est équivalente à la suite $(\sqrt{2n})$.

$$u_n \sim \sqrt{2n}$$

Problème 2. (15 points)

1. (a) (1 point) Démontrons les formules :

$$\forall x \in \mathbb{R} \qquad \operatorname{ch}(2x) = \operatorname{ch}^2 x + \operatorname{sh}^2 x = 2 \operatorname{ch}^2 x - 1 = 1 + 2 \operatorname{sh}^2 x$$
$$\operatorname{sh}(2x) = 2 \operatorname{sh} x \operatorname{ch} x$$

Soit $x \in \mathbb{R}$. Alors:

$$\operatorname{ch}^{2} x + \operatorname{sh}^{2} x = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} + \left(\frac{e^{x} - e^{-x}}{2}\right)^{2} = \frac{2e^{2x} + 2e^{-2x}}{4} = \operatorname{ch}(2x).$$

La formule $\operatorname{ch}^2 x - \operatorname{sh}^2 x = 1$ permet d'obtenir les deux autres formules pour $\operatorname{ch}(2x)$. Ensuite :

$$2 \operatorname{sh} x \operatorname{ch} x = 2 \left(\frac{e^x + e^{-x}}{2} \right) \left(\frac{e^x - e^{-x}}{2} \right) = \frac{e^{2x} - e^{-2x}}{2} = \operatorname{sh}(2x).$$

Les formules sont démontrées.

- (b) (2 points) Vérifions que l'égalité proposée est bien définie sur R.
 - Les fonctions th, \arctan et sh sont définies sur \mathbb{R} ,
 - La fonction arcsin est définie sur [-1, 1].
 - La fonction th prend ses valeurs dans l'intervalle]-1,1[.

Ceci montre que pour tout $x \in \mathbb{R}$, les expressions arcsin th x et arctan sh x sont bien définies. Montrons maintenant qu'elles sont égales.

Méthode 1. On remarque que, pour tout $x \in \mathbb{R}$:

$$\tan(\arcsin th x) = \frac{\sin(\arcsin th)}{\cos(\arcsin th)} = \frac{th x}{\sqrt{1 - th^2 x}}$$

De plus:

$$\sqrt{1 - \operatorname{th}^2 x} = \sqrt{\frac{1}{\operatorname{ch}^2 x}} = \frac{1}{|\operatorname{ch} x|} = \frac{1}{\operatorname{ch} x}.$$

Ceci car la fonction che st strictement positive. Ainsi:

$$\tan(\arcsin \operatorname{th} x) = \operatorname{th} x \operatorname{ch} x = \operatorname{sh} x.$$

Par application de la fonction arctan:

$$\arctan \tan (\arcsin \operatorname{th} x) = \arctan \operatorname{sh} x.$$

On sait que pour tout $x \in \mathbb{R}$: $-1 < \operatorname{th} x < 1$.

La fonction arcsin est strictement croissante donc :

$$\forall x \in \mathbb{R}$$
 $-\frac{\pi}{2} < \arcsin(\operatorname{th} x) < \frac{\pi}{2}$

De plus par définition de l'arc-tangente :

$$\forall X \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\arctan(\tan X) = X$$

On en déduit donc :

$$\forall x \in \mathbb{R}$$
 arcsin th $x = \arctan \sinh x$.

Méthode 2. On définit les fonctions f et g par :

$$\forall x \in \mathbb{R}$$
 $g(x) = \arcsin \operatorname{th} x$ et $g(x) = \arctan \operatorname{sh} x$.

D'après le préambule de cette question ces fonctions sont définies sur R.

La fonction arcsin est dérivable sur]-1,1[. La fonction the est dérivable sur \mathbb{R} , et :

$$\forall x \in \mathbb{R} \quad \text{th } x \in]-1, 1[.$$

Donc par composition la fonction f est dérivable sur \mathbb{R} .

Les fonctions arctan et sh sont dérivables sur \mathbb{R} donc par composition la fonction g est dérivable sur \mathbb{R} .

On obtient:

$$\forall x \in \mathbb{R} \qquad f'(x) = \frac{1 - \operatorname{th}^2 x}{\sqrt{1 - \operatorname{th}^2 x}} = \sqrt{1 - \operatorname{th}^2 x} = \sqrt{\frac{1}{\operatorname{ch}^2 x}} = \frac{1}{\operatorname{ch} x} \qquad \operatorname{car} \ \operatorname{ch} x > 0$$
$$g'(x) = \frac{\operatorname{ch} x}{1 + \operatorname{sh}^2 x} = \frac{\operatorname{ch} x}{\operatorname{ch}^2 x} = \frac{1}{\operatorname{ch} x}$$

Ainsi f' = g'. Comme $\mathbb R$ est un intervalle alors par théorème il existe une constante K telle que :

$$\forall x \in \mathbb{R}$$
 $f(x) = g(x) + K$

Comme f(0)=g(0)=0 alors K=0, ce qui montre que f=g, l'égalité est démontrée.

2. (a) (2 points) Soit $t \in \left] -\frac{\pi}{4}, \frac{\pi}{4} \right[$. Alors $t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ donc $\tan(2t)$ est définie et :

$$f(\tan(2t)) = 2\arctan\frac{\tan(2t)}{1 + \sqrt{1 + \tan^2(2t)}} = 2\arctan\frac{\sin(2t)}{\cos(2t) + \cos(2t)\sqrt{\frac{1}{\cos^2(2t)}}}$$

Comme $2t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ alors } \cos(2t) > 0 \text{ et } :$

$$f(\tan(2t)) = 2\arctan\frac{\sin(2t)}{\cos(2t) + 1} = 2\arctan\frac{2\sin t\cos t}{2\cos^2 t} = 2\arctan(\tan t).$$

Comme $t \in \left] -\frac{\pi}{4}, \frac{\pi}{4} \right[$ alors $t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et donc $\arctan(\tan t) = t$. On en déduit :

$$\forall t \in \left] -\frac{\pi}{4}, \frac{\pi}{4} \right[f(\tan(2t)) = 2t.$$

(b) (1 point) Soit x un réel, et $t = \frac{1}{2} \arctan x$. Alors $\tan(2t) = x$.

De plus $\arctan x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ donc } t \in \left] -\frac{\pi}{4}, \frac{\pi}{4} \right[, \text{ et d'après la question précédente} :$

$$f(x) = f(\tan(2t)) = 2t = \arctan x.$$

Ceci étant valable pour tout $x \in \mathbb{R}$, on en déduit que f est la fonction arc-tangente.

- 3. (a) (1 point) La fonction g est définie en tout point x tel que $1-x^2\geqslant 0$. En effet, si $1-x^2\geqslant 0$ alors $\sqrt{1-x^2}$ est défini et positif, donc $1+\sqrt{1-x^2}>0$, et ainsi le quotient $\frac{x}{1+\sqrt{1-x^2}}$ est défini, c'est un réel donc il admet un arc-tangente. La fonction g est donc définie sur I=[-1,1].
 - (b) (1 point) Si $x \in \mathbb{R}$ alors th(2x) est défini et appartient à]-1, 1[, donc $g(\operatorname{th}(2x))$ est défini. On calcule :

$$g(\operatorname{th}(2x)) = 2 \arctan \frac{\operatorname{th}(2x)}{1 + \sqrt{1 - \operatorname{th}^2(2x)}} = 2 \arctan \frac{\operatorname{sh}(2x)}{\operatorname{ch}(2x)\left(1 + \sqrt{\frac{1}{\operatorname{ch}^2(2x)}}\right)}$$

La fonction ch est strictement positive donc $|\operatorname{ch}(2x)| = \operatorname{ch}(2x)$, et:

$$g(\operatorname{th}(2x)) = 2 \arctan \frac{\operatorname{sh}(2x)}{\operatorname{ch}(2x) + 1} = 2 \arctan \frac{2 \operatorname{sh} x \operatorname{ch} x}{2 \operatorname{ch}^2 x} = 2 \arctan \operatorname{th} x$$

(c) (1 point) Comme th $x \in]-1,1[$ alors par stricte croissance de la fonction arctangente $\operatorname{arctan}(\operatorname{th} x) \in]-\frac{\pi}{4},\frac{\pi}{4}[$, et donc $g(\operatorname{th}(2x)) \in]-\frac{\pi}{2},\frac{\pi}{2}[$. Ainsi ce réel admet une tangente, et :

$$\tan(g(\operatorname{th}(2x))) = \tan(2\arctan\operatorname{th} x) = \frac{2\operatorname{th} x}{1-\operatorname{th}^2 x}$$

Comme $1 - \operatorname{th}^2 x = \frac{1}{\operatorname{ch}^2 x}$ alors :

$$\tan(q(\operatorname{th}(2x))) = 2\operatorname{sh} x \operatorname{ch} x = \operatorname{sh}(2x).$$

(d) (2 points) Par définition de l'arctangente :

$$\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\quad \forall y \in \mathbb{R} \quad y = \tan x \iff x = \arctan y.$$

Nous avons vu que $g(\operatorname{th}(2x)) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, donc l'expression de la question précédente donne :

$$g(\operatorname{th}(2x)) = \arctan(\operatorname{sh}(2x)).$$

D'après l'égalité de la question (1b) :

$$\forall x \in \mathbb{R}$$
 $g(\operatorname{th}(2x)) = \arcsin(\operatorname{th}(2x)).$

Tout élément y de l'intervalle]-1,1[admet un antécédent x par la fonction $x \mapsto th(2x)$, donc :

$$\forall y \in]-1,1[$$
 $g(y) = \arcsin y.$

La fonction g est continue par composition, somme et quotient. La fonction arcsin est également continue, donc par unicité de la limite en -1 et 1:

$$\forall y \in [-1, 1]$$
 $g(y) = \arcsin y$.

En conclusion, la fonction g est la fonction arc-sinus.

4. (a) (1 point) La fonction h est définie en tout réel x tel que $1+x\neq 0$ et $\frac{1-x}{1+x}\geqslant 0$.

Comme $(1+x)^2$ est positif alors $\frac{1-x}{1+x}$ est du signe de $(1-x)(1+x)=1-x^2$, donc la fonction h est définie sur J=]-1,1].

Si $x \in J$ alors $\sqrt{\frac{1-x}{1+x}}$ est défini et positif, et donc par propriétés de l'arc-tangente :

$$0 \leqslant \arctan \sqrt{\frac{1-x}{1+x}} < \frac{\pi}{2}$$
 ce qui montre que $h(x) \in [0, \pi[$.

(b) (2 points) Soit $y \in [0, \pi[$. Alors pour tout $x \in J$:

$$h(x) = y$$
 \iff $\arctan \sqrt{\frac{1-x}{1+x}} = \frac{y}{2}$

Comme $y\in[0,\pi[$ alors $\frac{y}{2}\in\left[0,\frac{\pi}{2}\right[$, donc par propriétés de l'arctangente :

$$h(x) = y$$
 \iff $\sqrt{\frac{1-x}{1+x}} = \tan\frac{y}{2}$

Comme $\frac{y}{2} \in \left[0, \frac{\pi}{2}\right]$ alors $\tan \frac{y}{2}$ est positif, donc :

$$h(x) = y$$
 \iff $\frac{1-x}{1+x} = \tan^2 \frac{y}{2}$

Par équivalences :

$$h(x) = y \qquad \iff \qquad 1 - x = (1+x)\tan^2\frac{y}{2}$$

$$\iff \qquad \left(1 + \tan^2\frac{y}{2}\right)x = 1 - \tan^2\frac{y}{2}$$

$$\iff \qquad x = \frac{1 - \tan^2\frac{y}{2}}{1 + \tan^2\frac{y}{2}} = \frac{\cos^2\frac{y}{2} - \sin^2\frac{y}{2}}{\cos^2\frac{y}{2} + \sin^2\frac{y}{2}} = \cos y.$$

Nous avons démontré que l'équation h(x) = y admet $x = \cos y$ pour unique solution.

(c) (1 point) D'après la question précédente la fonction h est bijective de J=[-1,1] dans $[0,\pi[$, de réciproque $\cos:[0,\pi[\to]-1,1]$.

Or la réciproque de la fonction $\cos: [0, \pi] \to [-1, 1]$ est la fonction $\arccos: [-1, 1] \to [0, \pi]$.

Par restriction la réciproque de la fonction cos : $[0, \pi[\to]-1, 1]$ est la fonction arccos : $]-1, 1] \to [0, \pi[$.

Par unicité de la fonction réciproque, h est la fonction arccos restreinte à l'intervalle [-1,1]:

$$\forall x \in]-1,1]$$
 $h(x) = \arccos x.$