TD. B2 Logique

Exercices de cours ____

① Démontrer la seconde loi de De Morgan à l'aide d'une table de vérité.

La démontrer aussi sans table de vérité.

(2) Démontrer que :

$$P \Rightarrow (Q \text{ ou } R) = (P \text{ et } \neg Q) \Rightarrow R$$

- (3) À l'aide d'une table de vérité à 8 lignes, démontrer les associativités et distributivités.
- $\ensuremath{ \begin{tabular}{c} 4 \ensuremath{ \mbox{Soit}} f: \mathbb{R} \to \mathbb{R} \mbox{ une fonction. Que dire des propositions suivantes ?} \ensuremath{ \mbox{}}$
- a. $\exists A \in \mathbb{R} \quad \forall x \in \mathbb{R} \quad f(x) \leqslant A$
- b. $\forall A \in \mathbb{R} \quad \forall x \in \mathbb{R} \quad f(x) \leqslant A$
- c. $\forall A \in \mathbb{R} \quad \exists x \in \mathbb{R} \quad f(x) \leqslant A$
- d. $\exists A \in \mathbb{R} \quad \exists x \in \mathbb{R} \quad f(x) \leqslant A$
- (5) Énoncer en termes logiques les propositions suivantes pour une fonction f de \mathbb{R} dans \mathbb{R} .
- a. f est la fonction nulle.
- b. f n'est pas la fonction nulle.
- c. f s'annule.
- d. f ne s'annule pas.
- e. f est croissante.
- f. f n'est pas croissante.
- g. f est 2π -périodique.
- h. f est périodique.
- i. $\lim_{x \to +\infty} f(x) = +\infty$.
- **6** Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1,\,u_1=2,$ et pour tout $n\in\mathbb{N}$:

$$u_{n+2} = 5u_{n+1} - 6u_n$$

- a. Calculer les premiers termes de cette suite.
- b. Deviner une expression générale de u_n , puis démontrer votre conjecture.
- $\begin{picture}(7)\end{picture}$ Soit $m\in\mathbb{N}$ et f la fonction définie sur \mathbb{R} par :

$$f(x) = x^m$$

Démontrer que pour tout $k \in \{0, ..., m\}$:

$$\forall x \in \mathbb{R}$$
 $f^{(k)}(x) = \frac{m!}{(m-k)!} x^{m-k}$

Expliquer pour quoi l'implication $\mathscr{P}_m \Longrightarrow \mathscr{P}_{m+1}$ est fausse.

Travaux dirigés

- 1 Donner la négation des propositions suivantes.
- a. $x \leq 3$
- b. $0 \le x \le 2$.
- c. Si la caravane passe alors les chiens aboient.
- d. Robert joue à la pétanque tous les dimanches.
- e. Les étudiants qui ont de bonnes moyennes sont contents et leurs parents aussi.
- f. La nuit tous les chats sont gris.
- **2** Soit P, Q, R des propositions. Démontrer :
- a. $((P \Rightarrow Q) \text{ et } (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$
- b. $(P \Leftrightarrow (P \Leftrightarrow Q)) = Q$
- c. $((P \text{ ou } Q) \Leftrightarrow (P \text{ et } Q)) = (P \Leftrightarrow Q)$
- **3** La proposition suivante est-elle vraie ou fausse?

$$\forall x \in \mathbb{R}$$
 $x^2 < 0 \implies x = x + 1$

- 4 Soit i et j deux entiers naturels. Démontrer que si i + j > 7 alors i > 3 ou j > 4.
- 5 Soit x un réel. Démontrer que si x^2 est irrationnel alors x est irrationnel.
- $\boxed{\mathbf{6}}$ Soit a et b deux réels. Démontrer que si

$$\forall x \in \mathbb{R} \quad x \leqslant a \Longrightarrow x \leqslant b$$

alors $a \leq b$.

Donner la contraposée de cette propriété.

|7| Soit x un réel. Démontrer que :

$$x = 0 \iff \forall \varepsilon > 0 \ |x| \leqslant \varepsilon$$

- 8 Les assertions suivantes sont-elles vraies ou fausses?
- a. $\forall x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad y = x^2$
- b. $\forall x \in \mathbb{R} \quad \exists y \in \mathbb{R} \quad y = x^2$
- c. $\exists x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad y = x^2$
- d. $\exists x \in \mathbb{R} \quad \exists y \in \mathbb{R} \quad y = x^2$
- e. $\forall y \in \mathbb{R} \quad \exists x \in \mathbb{R} \quad y = x^2$
- f. $\exists y \in \mathbb{R} \quad \forall x \in \mathbb{R} \quad y = x^2$

Pourquoi manque-t-il deux possibilités?

- 9 Démontrer qu'étant donnés trois réels, deux au moins d'entre eux sont de même signe.
- Pour ceci, remarquer que deux réels x et y ont même signe si $xy \ge 0$.

 $\boxed{\mathbf{10}}$ Soit f une fonction de $\mathbb R$ dans $\mathbb R$. Écrire à l'aide de quantificateurs les propositions suivantes ainsi que leurs négations.

- a. f est l'identité de \mathbb{R} .
- b. f admet un point fixe.
- c. f est monotone.
- d. f est surjective (tout élément de $\mathbb R$ admet au moins un antécédent).
- e. f est injective (tout élément de \mathbb{R} admet au plus un antécédent).

11 Soit f et g deux fonctions définies sur \mathbb{R} . Les phrases suivantes sont-elles équivalentes?

a.
$$\exists x \in \mathbb{R} \ (f(x) = 0 \text{ et } g(x) = 0)$$

et
$$(\exists x \in \mathbb{R} \ f(x) = 0)$$
 et $(\exists x \in \mathbb{R} \ g(x) = 0)$

b. $\exists x \in \mathbb{R} \ (f(x) = 0 \text{ ou } g(x) = 0)$

et
$$(\exists x \in \mathbb{R} \ f(x) = 0)$$
 ou $(\exists x \in \mathbb{R} \ g(x) = 0)$

- c. Répondre aux mêmes questions en remplaçant les \exists par des $\forall.$
- **12** Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction.

Démontrer que si $f\circ f$ est croissante et $f\circ f\circ f$ est strictement décroissante, alors f est strictement décroissante.

- 13 Principe des tiroirs.
- a. Soit $n \in \mathbb{N}^*$. Ma commode possède n tiroirs et elle contient n+1 chaussettes.

Démontrer qu'au moins un tiroir contient au moins deux chaussettes.

- b. Démontrer de nouveau qu'étant donnés trois réels, deux au moins sont de même signe.
- 14 On considère 2025 entiers relatifs.

Démontrer qu'il est possible d'en extraire un certain nombre dont la somme est multiple de 2025.

- **15** Démontrer que :
- a. Pour tout $n \in \mathbb{N}^*$ $1 + \sum_{k=0}^{n-1} k \cdot k! = n!$
- b. Pour tout entier $n \ge 4$ $2^n \ge 3(n+1)$
- c. Pour tout $n \in \mathbb{N}^*$ $\prod_{k=1}^{n} \left(1 + \frac{1}{3k}\right) \geqslant \sqrt[3]{n+1}$
- d. Pour tout $n \in \mathbb{N}$ 7 divise $3^{2n+3} + 2^n$
- **16** Pour tout $n \in \mathbb{N}$ on note

$$\mathcal{P}_n$$
: $7^n + 1$ est multiple de 6.

- a. Démontrer que : $\forall n \in \mathbb{N} \quad \mathcal{P}_n \Longrightarrow \mathcal{P}_{n+1}$.
- b. Démontrer que \mathcal{P}_n est toujours fausse.
- **17**] On considère la suite de Fibonacci $(u_n)_{n\in\mathbb{N}}$ définie par $u_0 = u_1 = 1$ et :

$$\forall n \in \mathbb{N} \quad u_{n+2} = u_{n+1} + u_n$$

- a. Donner une expression simple de $u_n^2 u_{n-1}u_{n+1}$ pour tout $n \in \mathbb{N}^*$ et la démontrer.
- b. Même question avec $\sum_{k=0}^{n} u_k$ pour tout $n \in \mathbb{N}$.

18 Soit $f: \mathbb{N} \to \mathbb{N}$ une application strictement croissante.

Démontrer que pour tout $n \in \mathbb{N}$: $f(n) \ge n$

19 Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que :

$$u_0 = u_1 = 1$$
 et $\forall n \in \mathbb{N}$ $u_{n+2} = \frac{1}{u_{n+1}} + u_n$.

Justifier que cette suite est bien définie.

20 Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=0$, $u_1=1$, et :

$$\forall n \in \mathbb{N} \quad u_{n+2} = 9u_{n+1} - 20u_n$$

Démontrer qu'il existe deux réels a et b tels que :

$$\forall n \in \mathbb{N} \qquad u_n = a^n - b^n$$

[21] Déterminer le terme général de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1, u_1=2$ et :

$$\forall n \in \mathbb{N} \qquad u_{n+2} = \frac{u_{n+1}^3}{u_n^2}$$

22 Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par la donnée de u_0, u_1, u_2 et l'égalité :

$$\forall n \in \mathbb{N} \quad u_{n+3} = 7u_{n+2} - 11u_{n+1} + 5u_n$$

- a. On suppose que $u_0 = 1$, $u_1 = 3$, $u_2 = 5$. Déterminer le terme général de (u_n) .
- b. Même question avec $u_0 = 1$, $u_1 = 5$ et $u_2 = 25$.

23 Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite de réels strictement positifs tels que :

$$\forall n \in \mathbb{N}$$

$$\sum_{k=1}^{n} u_k^3 = \left(\sum_{k=1}^{n} u_k\right)^2$$

Démontrer que : $\forall n \in \mathbb{N}^* \quad u_n = n$.

 $\fbox{\bf 24}$ Déterminer toutes les fonctions $f:\mathbb{N}\to\mathbb{N}$ qui vérifient :

$$\forall (m,n) \in \mathbb{N}^2 \quad f(m+n) = f(m)f(n)$$

25 Déterminer toutes les fonctions $f: \mathbb{R}_+^* \to \mathbb{R}$ dérivables qui vérifient :

$$\forall (x,y) \in (\mathbb{R}_+^*)^2 \qquad f(xy) = f(x) + f(y)$$

26 Déterminer toutes les fonctions $f: \mathbb{R}_+^* \to \mathbb{R}$ qui vérifient :

$$\forall x \in \mathbb{R}_+^* \qquad f(x) + 3f\left(\frac{1}{x}\right) = x^2$$

27 Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ qui vérifient :

a.
$$\forall (x,y) \in \mathbb{R}^2$$
 $f(x)f(y) - f(xy) = x + y$

b.
$$\forall (x,y) \in \mathbb{R}^2 \quad f(\frac{2x+y}{3}) = \frac{1}{2}(f(x) + f(y))$$

c.
$$\forall x \in \mathbb{R}$$
 $f(x) + x f(1-x) = 1 + x$

d.
$$\forall (x, y) \in \mathbb{R}^2$$
 $f(x - f(y)) = 2 - x - y$