Corrigé du Devoir à la Maison n°3

1. On calcule la limite de $\frac{n^n}{a^{2^n}} = e^{n \ln n - 2^n \ln a}$ lorsque n tend vers $+\infty$.

Comme a > 1 alors $\ln a > 0$.

Par croissances comparées $\ln n = o(n)$ donc : $n \ln n = o(n^2)$.

Toujours par croissances comparées : $n^2 = o(2^n)$.

Donc par transitivité $n \ln n = o(2^n)$ et enfin comme $\ln a \neq 0$:

$$n \ln n = o(2^n \ln a).$$

Ceci montre que $n \ln n - 2^n \ln a \sim -2^n \ln a$, et comme $\ln a > 0$ alors :

$$n \ln n - 2^n \ln a \xrightarrow[n \to +\infty]{} -\infty$$

Par composition de limites : $e^{n \ln n - 2^n \ln a} \xrightarrow[n \to +\infty]{} 0.$

Finalement $\frac{n^n}{a^{2^n}} \xrightarrow[n \to +\infty]{} 0$ donc : $n^n = o(a^{2^n})$.

2. (a) On démontre par récurrence que pour tout $n \in \mathbb{N}$: $u_n \ge 2$.

Comme $u_0 = 2$ alors $u_0 \ge 2$.

Si $u_n \ge 2$ pour un certain $n \in \mathbb{N}$ alors $u_n^2 \ge 4$, donc $u_n^2 - 1 \ge 3$ et ainsi $u_{n+1} \ge 2$. La propriété est héréditaire.

Par récurrence : $\forall n \in \mathbb{N} \quad u_n \geqslant 2$.

(b) Soit $f: x \mapsto x^2 - 1$.

Cette fonction est croissante sur \mathbb{R}_+ , donc sur $[2, +\infty[$.

La suite $(u_n)_{n\in\mathbb{N}}$ est récurrente d'itératrice f, incluse dans l'intervalle $[2, +\infty[$ sur lequel f est croissante, donc elle est monotone.

Comme $u_0 = 2$ et $u_1 = 3$ alors elle est croissante.

(c) La suite $(u_n)_{n\in\mathbb{N}}$ est croissante, donc d'après le théorème de la limite monotone elle admet une limite, éventuellement infinie.

Supposons que cette limite est finie et notons-là ℓ .

Comme la suite (u_n) est croissante alors : $\forall n \in \mathbb{N} \quad u_n \geqslant u_0 = 2$.

Par théorème de comparaison $\ell \geqslant 2$.

Comme la suite (u_n) est récurrente d'itératrice f et f est continue alors $f(\ell) = \ell$.

Ceci donne $\ell = \frac{1-\sqrt{5}}{2}$ ou $\ell = \frac{1+\sqrt{5}}{2}$.

Comme 5<9 alors $\frac{1+\sqrt{5}}{2}<2.$ Ainsi $\frac{1-\sqrt{5}}{2}<\frac{1+\sqrt{5}}{2}<2\leqslant\ell.$

Cette contradiction montre que la limite de (u_n) ne peut être finie.

Comme (u_n) est croissante alors elle ne peut tendre vers $-\infty$.

Elle tend donc vers $+\infty$.

3. (a) On calcule, pour tout $n \in \mathbb{N}$:

$$v_n - v_{n+1} = \frac{1}{2^{n+1}} (2 \ln u_n - \ln u_{n+1}) = \frac{1}{2^{n+1}} \ln \frac{u_n^2}{u_{n+1}}$$
$$= \frac{1}{2^{n+1}} \ln \frac{u_{n+1} + 1}{u_{n+1}} = \frac{1}{2^{n+1}} \ln \left(1 + \frac{1}{u_{n+1}}\right)$$

Comme (u_n) est minorée par 2 alors elle est positive, donc $1 + \frac{1}{u_{n+1}} \ge 1$, ce qui montre que $\frac{1}{2^{n+1}} \ln \left(1 + \frac{1}{u_{n+1}}\right) \ge 0$.

De plus on sait que:

$$\forall x \in]-1, +\infty[$$
 $\ln(1+x) \leqslant x$

Ceci montre que $\ln\left(1 + \frac{1}{u_{n+1}}\right) \leqslant \frac{1}{u_{n+1}}$.

Finalement on a démontré :

$$\forall n \in \mathbb{N} \qquad 0 \leqslant v_n - v_{n+1} \leqslant \frac{1}{2^{n+1}} \times \frac{1}{u_{n+1}} \tag{1}$$

(b) Soit $p \in \mathbb{N}$. Par télescopage :

$$\forall n \in \mathbb{N} \qquad v_p - v_n = \sum_{k=p}^{n-1} (v_k - v_{k+1})$$
 (2)

Par somme l'encadrement de la question précédente donne :

$$\forall n \in \mathbb{N} \qquad 0 \leqslant \sum_{k=p}^{n-1} (v_k - v_{k+1}) \leqslant \sum_{k=p}^{n-1} \left(\frac{1}{2^{k+1}} \times \frac{1}{u_{k+1}} \right)$$
 (3)

On sait que la suite (u_n) est décroissante, donc pour tout $k \in \mathbb{N}$, si $p \leqslant k \leqslant n-1$ alors $u_{p+1} \geqslant u_{k+1}$. Ceci donne $\frac{1}{u_{p+1}} \leqslant \frac{1}{u_{p+1}}$ et donc :

$$\forall k = p, \dots, n-1$$
 $\frac{1}{2^{k+1}} \times \frac{1}{u_{k+1}} \leqslant \frac{1}{2^{k+1}} \times \frac{1}{u_{p+1}}$

Par somme:

$$\sum_{k=p}^{n-1} \left(\frac{1}{2^{k+1}} \times \frac{1}{u_{k+1}} \right) \leqslant \sum_{k=p}^{n-1} \left(\frac{1}{2^{k+1}} \times \frac{1}{u_{p+1}} \right) \tag{4}$$

On reconnaît la somme des termes d'une suite géométrique :

$$\sum_{k=p}^{n-1} \left(\frac{1}{2^{k+1}} \times \frac{1}{u_{p+1}} \right) = \frac{1}{u_{p+1}} \sum_{k=p}^{n-1} \left(\frac{1}{2} \right)^{k+1} = \frac{1}{u_{p+1}} \left[\left(\frac{1}{2} \right)^p - \left(\frac{1}{2} \right)^n \right]$$
 (5)

Ce dernier réel est inférieur à $\frac{1}{u_{p+1}} \times \left(\frac{1}{2}\right)^p$, donc par transitivité les égalités et inégalités (2), (3), (4) et (5) donnent :

$$\forall n \geqslant p \qquad 0 \leqslant v_p - v_n \leqslant \frac{1}{2^p} \times \frac{1}{u_{p+1}} \tag{*}$$

(c) En particulier pour p = 0 on obtient :

$$\forall n \in \mathbb{N} \qquad 0 \leqslant v_0 - v_n \leqslant \frac{1}{u_1}$$

Comme $v_0 = \ln 2$ et $u_1 = 3$ alors :

$$\forall n \in \mathbb{N}$$
 $\ln 2 - \frac{1}{3} \leqslant v_n \leqslant \ln 2$

Ainsi la suite (v_n) est minorée par $\ln 2 - \frac{1}{3}$.

De plus l'encadrement (1) donne : $\forall n \in \mathbb{N} \quad 0 \leqslant v_n - v_{n+1}$.

Ceci implique que la suite (v_n) est décroissante.

Elle est décroissante minorée donc par théorème de la limite monotone elle converge.

Soit $\ell = \lim v_n$.

On sait que: $\forall n \in \mathbb{N} \quad \ln 2 - \frac{1}{3} \leqslant v_n$.

Par théorème de comparaison : $\ln 2 - \frac{1}{3} \leqslant \ell$;

Comme $\ln 2 \geqslant \frac{1}{2}$ alors $\ln 2 - \frac{1}{3} > 0$, donc $\ell > 0$: ℓ est strictement positif.

On peut aussi remarquer que:

$$\ln 2 > \frac{1}{3} \qquad \Longleftrightarrow \qquad 2 > e^{\frac{1}{3}} \qquad \Longleftrightarrow \qquad 2^3 > e$$

On sait que e < 8, donc par équivalences $\ln 2 > \frac{1}{3}$.

(d) On sait que la suite (v_n) converge vers ℓ , donc par théorème de comparaison l'encadrement (\star) donne :

$$0 \leqslant v_p - \ell \leqslant \frac{1}{2^p} \times \frac{1}{u_{p+1}}.$$

Ceci est valable pour tout $p \in \mathbb{N}$. Comme $v_p = \frac{1}{2^p} \ln u_p$ alors :

$$\forall p \in \mathbb{N}$$
 $2^p \ell \leqslant \ln u_p \leqslant 2^p \ell + \frac{1}{u_{p+1}}$

(e) Comme $a=e^\ell$ alors $\ell=\ln a.$ Par croissance de la fonction exponentielle l'encadrement précédent donne :

$$\forall p \in \mathbb{N} \qquad a^{2^p} \leqslant u_p \leqslant a^{2^p} \times e^{\frac{1}{u_{p+1}}}$$

Puis:

$$\forall p \in \mathbb{N} \qquad 1 \leqslant \frac{u_p}{a^{2^p}} \leqslant e^{\frac{1}{u_{p+1}}}$$

Comme $u_p \xrightarrow[p \to +\infty]{} +\infty$ alors $e^{\frac{1}{u_{p+1}}} \xrightarrow[p \to +\infty]{} 1$, et par théorème d'encadrement :

$$\frac{u_p}{a^{2^p}} \xrightarrow[p \to +\infty]{} 1$$

Comme p est une variable muette, ceci signifie : $u_n \sim a^{2^n}$.