Chapitre A6 Primitives

I. Intégrales et primitives

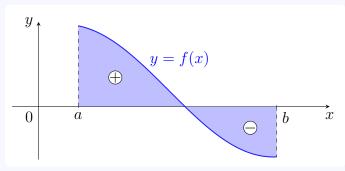
A. Intégrales

Définition

Soit I un intervalle, a et b deux points de I tels que a < b, et $f: I \to \mathbb{R}$ une fonction continue. L'int'egrale

$$\int_a^b f(t) dt$$
 ou $\int_a^b f$

est l'aire de la partie du plan délimitée par l'axe des abscisses, les droites d'équations x=a et x=b, et la courbe de f. Les parties situées en-dessous de l'axe des abscisses sont comptées négativement.



Si a > b alors on note :

$$\int_{a}^{b} f(t) dt = -\int_{b}^{a} f(t) dt$$

Remarque. La variable t est muette : $\int_a^b f(t) dt = \int_a^b f(x) dx = \int_a^b f(x) dx$

Proposition - Relation de Chasles

Soit $a,\,b,\,c$ trois points quel conques d'un intervalle I et f une fonction continue sur I. Alors :

$$\int_{a}^{c} f(t) dt = \int_{a}^{b} f(t) dt + \int_{b}^{c} f(t) dt$$

Proposition - Linéarité de l'intégrale

Soit f et g deux fonctions continues sur un intervalle [a,b], et λ un réel. Alors :

$$\int_a^b (f(t) + g(t)) dt = \int_a^b f(t) dt + \int_a^b g(t) dt \quad \text{et} \quad \int_a^b \lambda f(t) dt = \lambda \int_a^b f(t) dt$$

B. Gonard

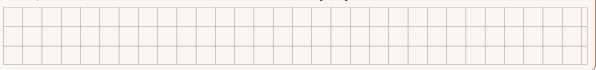
Proposition - Croissance de l'intégrale

Soit f et g deux fonctions continues sur un intervalle I, et a, b deux points de I tels que a < b.

Si
$$\forall t \in [a, b]$$
 $f(t) \leqslant g(t)$ alors $\int_a^b f(t) dt \leqslant \int_a^b g(t) dt$

Proposition - Inégalité triangulaire

Soit f une fonction continue sur un intervalle [a, b]. Alors:



Exemple 1. Pour tout $n \in \mathbb{N}$ on pose $I_n = \int_0^{\pi} \frac{t^n}{n!} \cos t \, dt$. Démontrer que :

$$\forall n \in \mathbb{N} \qquad 0 \leqslant |I_n| \leqslant \frac{\pi^{n+1}}{(n+1)!}$$

B. Primitives

Définition

Soit D une partie de \mathbb{R} , et $f:D\to\mathbb{R}$ une fonction.

Une primitive de f est une fonction $F: D \to \mathbb{R}$ telle que :

- F est dérivable.
- F' = f

Exemple 2. Soit :

$$f_1(x) = 4$$
 $f_2(x) = x$ $f_3(x) = \sin x$ $f_4(x) = e^x$ $f_5(x) = \tan x$

Alors ces fonctions admettent pour primitives respectives :

$F_1(x) =$	$F_2(x) =$	$F_3(x) = $	$F_4(x) =$	$F_5(x) = 0$

Proposition

Soit I un intervalle et $f: I \to \mathbb{R}$ une fonction. Soit F_1 et F_2 deux primitives de f. Alors il existe une constante $C \in \mathbb{R}$ telle que $F_2 = F_1 + C$, *i.e.*,

$$\forall x \in I$$
 $F_2(x) = F_1(x) + C$

Corollaire

Si F_0 est une primitive de f sur l'intervalle I, alors les primitives de f sont les fonctions $F_0 + C$ où C est une constante.

C. Théorème fondamental

Théorème Fondamental

(Isaac Newton, Angleterre, 1642 – 1727 et Gottfried Leibniz, Allemagne, 1646 – 1716) Soit I un intervalle non-vide, a un point de I, et $f:I\to\mathbb{R}$ une fonction continue.

Alors la fonction $\Phi: I \longrightarrow \mathbb{R}$ est une primitive de la fonction f. $x \longmapsto \int_a^x f(t) \, \mathrm{d}t$

Remarque. Plus précisément : Φ est l'unique primitive de f s'annulant en a.

Corollaire 1

Toute fonction continue admet une primitive.

Exemple. Pour tout $x \in \mathbb{R}$ on pose : $F(x) = \int_0^x e^{t^2} dt$

La fonction $f: x \mapsto e^{x^2}$ est continue sur l'intervalle \mathbb{R} , donc d'après le théorème fondamental la fonction F est une primitive de f, *i.e.*, F est dérivable, de dérivée :

F'(x) =

Corollaire 2

Soit f une fonction continue sur un intervalle I, et a, b deux points de I. Soit F une primitive de f. Alors :

$$\int_{a}^{b} f(t) \, \mathrm{d}t = F(b) - F(a)$$

On note $\left[F(t)\right]_a^b = F(b) - F(a)$.

Exemple 2 (suite). Calculer:

$$I_1 = \int_6^9 4 \, dt$$
 $I_2 = \int_0^2 t \, dt$ $I_3 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin t \, dt$ $I_4 = \int_0^1 e^t \, dt$ $I_5 = \int_0^{\frac{\pi}{4}} \tan t \, dt$

II. Calculs de primitives

A. Primitives usuelles

Fonction	Primitive	Ensemble ou condition de validité
x^{α} $(\alpha \neq -1)$		$ \begin{array}{ccc} \mathbb{R} & \text{si } \alpha \in \mathbb{N} \\ \mathbb{R}^* & \text{si } \alpha \in \mathbb{Z} \\ \mathbb{R}^*_+ & \text{sinon} \end{array} $
$\frac{1}{x}$		\mathbb{R}^*
e^x		\mathbb{R}
$\cos x$		\mathbb{R}
$\sin x$		\mathbb{R}
$\tan x$		$\mathbb{R} - \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$
$\operatorname{ch} x$		\mathbb{R}
$\operatorname{sh} x$		\mathbb{R}
h x		\mathbb{R}
$\frac{1}{1+x^2}$		\mathbb{R}
$\frac{1}{\sqrt{1-x^2}}$]-1,1[
u'(ax+b)		$ \begin{array}{c} u \text{ d\'erivable} \\ (a,b) \in \mathbb{R}^2 a \neq 0 \end{array} $
$u'u^{lpha}$		$\begin{array}{c} u \text{ d\'erivable} \\ \alpha \in \mathbb{R} \alpha \neq -1 \end{array}$
$\frac{u'}{u}$		u dérivable
$u'e^u$		u dérivable
$u'.f \circ u$		$\begin{array}{c} u \text{ dérivable} \\ F \text{ primitive de } f \end{array}$

4 B. Gonard

Exemple. Primitive de x^{α} :

• Une primitive de
$$x^4$$
 sur \mathbb{R} est
• Une primitive de \sqrt{x} sur \mathbb{R}_+ est
• Une primitive de $\frac{1}{x^2}$ sur \mathbb{R}^* est

Exemple 3. Donner une primitive de chacune des fonctions suivantes.

$$f_1(x) = 6x^2 - 5x\sqrt{x} + 4x \qquad f_2(x) = e^{2x-1} \qquad f_3(x) = \frac{1}{(1-x)^5}$$

$$f_4(x) = \frac{x+1}{\sqrt{x}} \qquad f_5(x) = x(3x^2+1)^2 \qquad f_6(x) = \sinh^2 x \cosh x$$

$$f_7(x) = \frac{\sin 2x}{\cos 2x + 1} \qquad f_8(x) = \frac{1}{\sqrt{3-4x^2}} \qquad f_9(x) = \frac{e^x}{e^{2x} + 1}$$

▶ Exercice 1.

B. Linéarisation d'expressions trigonométriques

Exemple 4. $I = \int_0^{\frac{\pi}{2}} \cos 2x \sin 3x \, dx$

▶ Exercices 2, 3.

C. Utilisation des complexes

Définition

Une fonction complexe est une fonction à variable réelle et à valeurs complexes, i.e., une fonction $f: D \to \mathbb{C}$ où D est une partie de \mathbb{R} .

Si f est une fonction complexe définie sur un segment [a,b] (avec a et b réels) alors on note :

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} \operatorname{Re}(f(t)) dt + i \int_{a}^{b} \operatorname{Im}(f(t)) dt$$

Exemple.

$$\int_0^x e^{it} dt =$$

Proposition

Soit λ un complexe non-nul. Une primitive de $f: t \mapsto e^{\lambda t}$ est $F: t \mapsto \frac{1}{\lambda} e^{\lambda t}$.

Remarque. En conséquence de la définition ci-dessus :

$$\int_{a}^{b} \operatorname{Re}(f(t)) dt = \operatorname{Re}\left(\int_{a}^{b} f(t) dt\right) \quad \text{et} \quad \int_{a}^{b} \operatorname{Im}(f(t)) dt = \operatorname{Im}\left(\int_{a}^{b} f(t) dt\right)$$

Exemple 5. Primitive de $x \mapsto e^x \cos 2x$

Exercice 4.

D. Fonctions rationnelles

Définitions

Une fraction rationnelle est un quotient de deux polynômes.

Une fonction rationnelle est un quotient de deux fonctions polynômiales.

Exemple 6.
$$I = \int_0^3 \frac{x+2}{x+1} dx$$
 $J = \int_1^{\sqrt{3}} \frac{x+3}{x^2+1} dx$

Exercices 5, 6.

Méthode

Calcul d'une intégrale de la forme $\int \frac{\lambda x + \mu}{ax^2 + bx + c} dx$:

• Calculer le discriminant du trinôme $ax^2 + bx + c$.

- Selon qu'il soit strictement positif, nul ou strictement négatif, appliquer une des trois méthodes de l'exemple ci-dessous.

Exemple 7.

(i)
$$(\Delta > 0)$$
 $I = \int_{1}^{2} \frac{\mathrm{d}x}{x^{2} - 2x - 3}$

(ii)
$$(\Delta = 0)$$
 $J_1 = \int_0^3 \frac{\mathrm{d}x}{x^2 + 4x + 4}$ puis $J_2 = \int_0^3 \frac{4x + 1}{x^2 + 4x + 4} \,\mathrm{d}x$

(iii)
$$(\Delta < 0)$$
 $K_1 = \int_0^3 \frac{\mathrm{d}x}{x^2 - 6x + 12}$ puis $K_2 = \int_0^3 \frac{x + 6}{x^2 - 6x + 12} \,\mathrm{d}x$

Exercices 7, 8.

Remarque. Plus généralement, si a_1, \ldots, a_n sont n réels distincts et si P est une fonction polynomiale de degré strictement inférieur à n alors il existe des scalaires $\alpha_1, \ldots, \alpha_n$ tels que:

$$\frac{P(x)}{(x-a_1)\cdots(x-a_n)} = \frac{\alpha_1}{x-a_1} + \cdots + \frac{\alpha_n}{x-a_n}$$

Exemple 8.
$$I = \int_3^7 \frac{x+2}{(x^2-1)(x+5)} dx$$

E. Intégration par parties

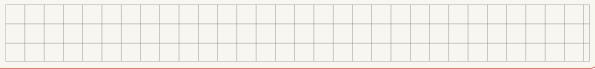
Rappel. Une fonction est de classe \mathscr{C}^1 si elle est dérivable de dérivée continue.

Théorème

Soit u et v deux fonctions de classe \mathscr{C}^1 sur un intervalle [a,b]. Alors :

$$\int_a^b u'(t)v(t) dt = \left[u(t)v(t)\right]_a^b - \int_a^b u(t)v'(t) dt$$

ce qui se résume en :



<u>Démonstration</u>. Comme les fonctions u et v sont de classe \mathscr{C}^1 alors les fonctions u' et v' sont définies et continues. Par produit u'v et uv' sont continues, et donc leurs intégrales sont bien définies.

Exemple 9.
$$I = \int_0^2 3t e^{2t} dt$$
 $J = \int_1^4 \ln t dt$

Remarque. Une primitive de la fonction ln est : $x \mapsto x \ln x - x$

▶ Exercice 9.

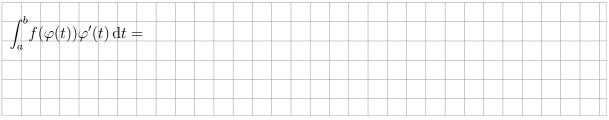
F. Changement de variable

Théorème

Soit f une fonction continue sur un intervalle I et $\varphi:[a,b]\to I$ une fonction de classe \mathscr{C}^1 . Alors :

$$\int_{a}^{b} f(\varphi(t))\varphi'(t) dt = \int_{\varphi(a)}^{\varphi(b)} f(x) dx$$

<u>Démonstration</u>. Comme f est continue alors elle admet une primitive. Soit F une primitive de f, alors la fonction $F \circ \varphi$ est dérivable de dérivée $\varphi' \cdot f \circ \varphi$ et donc :



Exemple 10.

Calculer
$$I = \int_0^{\frac{3}{2}} \frac{t^3}{2t+1} dt$$
 en posant $x = 2t+1$ et $J = \int_{-1}^1 \sqrt{1-x^2} dx$ en posant $x = \cos t$

Remarque. Le changement de variable consiste à poser $x = \varphi(t)$.

Alors
$$\frac{dx}{dt} = \varphi'(t)$$
 puis $dx = \varphi'(t)dt$.

► Exercice 10.