Devoir à la Maison n°3

Une suite à croissance très rapide

1. Soit a un réel strictement supérieur à 1. Démontrer que : $n^n = o(a^{2^n})$

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=2$ et pour tout $n\in\mathbb{N}$: $u_{n+1}=u_n^2-1$.

- 2. Limite de $(u_n)_{n\in\mathbb{N}}$.
 - (a) Démontrer que la suite (u_n) est minorée par 2.
 - (b) Démontrer qu'elle est croissante.
 - (c) Démontrer qu'elle diverge vers $+\infty$.
- 3. Vitesse de divergence.

Pour tout $n \in \mathbb{N}$ on pose : $v_n = \frac{1}{2^n} \ln u_n$

- (a) Démontrer que pour tout $n \in \mathbb{N}$: $0 \leqslant v_n v_{n+1} \leqslant \frac{1}{2^{n+1}} \times \frac{1}{u_{n+1}}$
- (b) Soit $p \in \mathbb{N}$. Démontrer que pour tout entier $n \ge p$:

$$0 \leqslant v_p - v_n \leqslant \frac{1}{2^p} \times \frac{1}{u_{p+1}} \tag{*}$$

- (c) En déduire que la suite $(v_n)_{n\in\mathbb{N}}$ est minorée par $\ln 2 \frac{1}{3}$ puis quelle converge, et enfin que sa limite est un réel ℓ strictement positif.
- (d) À l'aide de l'encadrement (\star) , démontrer :

$$\forall p \in \mathbb{N}$$
 $2^p \ell \leqslant \ln u_p \leqslant 2^p \ell + \frac{1}{u_{p+1}}$

(e) On pose $a = e^{\ell}$, si bien que a > 1. Démontrer que : $u_n \sim a^{2^n}$.