Devoir Surveillé n°2

Durée: 3 heures – Calculatrices non autorisées.

- On rappelle qu'une grande attention est portée à la présentation, l'orthographe, la qualité de la rédaction.
- En général les symboles mathématiques ne doivent pas figurer dans une phrase.
- Les objets introduits doivent être présentés correctement.
- Les références au cours doivent être citées, de même que les questions précédentes si elles sont utilisées.
- Il est inutile de recopier l'énoncé.
- Les copies doivent être numérotées, leur nombre total indiqué.
- Les annotations au crayon ne sont pas prises en compte.
- Le barème est indicatif.
- Si un élève est amené à repérer ce qui lui semble être une erreur d'énoncé, il le signalera sur sa copie et poursuivra sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Exercice. Construction géométrique des solutions d'une équation (12 points)

Soit $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$. On définit l'équation

$$z^2 - 2e^{i\theta}z - 1 = 0 \tag{E}$$

d'inconnue z complexe.

Cette équation a deux solutions éventuellement confondues z_1 et z_2 .

On note M_1 , M_2 , P, A, B, C les points d'affixes respectives z_1 , z_2 , $e^{i\theta}$, 1, -1, i dans un repère orthonormé direct du plan. On suppose que les points P, A, B et C sont connus et déjà placés sur la figure. L'objectif est de placer les points M_1 et M_2 à partir de ces points.

- 1. (a) Donner le module et un argument du discriminant Δ de l'équation (E).
 - (b) Calculer z_1 et z_2 .
- 2. (a) Démontrer que $2\cos\frac{\theta}{2} + \sqrt{2\cos\theta}$ et $2\cos\frac{\theta}{2} \sqrt{2\cos\theta}$ sont deux réels positifs.
 - (b) En déduire les formes exponentielles de $z_1 + 1$ et $z_2 + 1$.
 - (c) Vérifier que $z_1 + 1$, $z_2 + 1$, $e^{i\theta} + 1$ ont même argument modulo 2π . Que peut-on en déduire sur les points M_1 , M_2 , P et B?
- 3. (a) Factoriser $z_1 1$ et $z_2 1$ par $e^{i\theta/2}$ et en déduire leurs modules.
 - (b) En déduire que M_1 , M_2 et C sont sur un même cercle, et préciser le centre et le rayon de celui-ci.
- 4. Expliquer comment à partir du point P on peut construire graphiquement les points M_1 et M_2 sans résoudre l'équation (E).

Faire une figure dans le cas $\theta = \frac{\pi}{3}$.

Problème.

La fonction cosinus hyperbolique, notée ch, est définie par :

$$ch: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto \frac{e^x + e^{-x}}{2}$$

Partie A. (10 points)

- 1. Justifier que la fonction che st paire et dérivable.
- 2. Calculer sa dérivée, décrire ses variations.
- 3. Donner un équivalent simple de ch x pour x au voisinage de $+\infty$.

 On attend une expression de la forme $\lambda \varphi(x)$ où λ est un constante réelle et φ une fonction classique.
- 4. Tracer sommairement l'allure de la courbe de la fonction ch.
- 5. Démontrer les formules :

$$\forall x \in \mathbb{R} \qquad \operatorname{ch}(2x) = 2\operatorname{ch}^2 x - 1$$

$$\forall (x, y) \in \mathbb{R}^2 \qquad \operatorname{ch}(x + y) + \operatorname{ch}(x - y) = 2\operatorname{ch} x \operatorname{ch} y$$

- 6. Soit y un élément de l'intervalle $[1, +\infty]$.
 - (a) Justifier par un argument théorique que y admet un unique antécédent positif par la fonction ch.
 - (b) Calculer cet antécédent.

Partie B. (13 points)

Le but de cette partie est de déterminer l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ continues telles que :

$$\exists a \in \mathbb{R}_+^* \qquad f(a) > 1$$

$$\forall (x, y) \in \mathbb{R}^2 \qquad f(x+y) + f(x-y) = 2f(x)f(y) \tag{*}$$

Pour les questions 1 à 4 on suppose que f est une solution du problème.

- 1. (a) Démontrer que f(0) = 1.
 - (b) Démontrer que f est paire.
- 2. (a) Pour tout $x \in \mathbb{R}$, déterminer une relation simple entre f(x) et $\left(f\left(\frac{x}{2}\right)\right)^2$.
 - (b) Démontrer par l'absurde que : $\forall x \in \mathbb{R}$ $f(x) \ge -1$.
 - (c) Démontrer que pour tout $n \in \mathbb{N}$: $f\left(\frac{a}{2^n}\right) > 1$

Comme $f(a) \in]1, +\infty[$, alors d'après la partie précédente f(a) admet un unique antécédent positif par la fonction ch. On note β cet antécédent.

- 3. (a) Démontrer que pour tout $n \in \mathbb{N}$: $f\left(\frac{a}{2^n}\right) = \operatorname{ch}\left(\frac{\beta}{2^n}\right)$
 - (b) Soit $n \in \mathbb{N}$. Démontrer par récurrence double que : $\forall p \in \mathbb{N}$ $f\left(p\frac{a}{2^n}\right) = \operatorname{ch}\left(p\frac{\beta}{2^n}\right)$ On utilisera la relation (\star) .
- 4. (a) Soit $x \in \mathbb{R}_+$ et pour tout $n \in \mathbb{N}$ soit $p_n = \left\lfloor \frac{2^n x}{a} \right\rfloor$. Déterminer : $\lim_{n \to +\infty} \frac{p_n}{2^n}$
 - (b) Démontrer qu'il existe $\alpha \in \mathbb{R}^*$ tel que : $\forall x \in \mathbb{R}$ $f(x) = \operatorname{ch}(\alpha x)$
- 5. Conclure : quel est l'ensemble des solutions du problème?