Chapitre B3 Ensembles

I. Ensembles

A. Appartenance et inclusion

Définition

Soit E un ensemble.

Si x est élément de E alors on dit que x appartient à E et on note $x \in E$.

Si x n'appartient pas à E alors on note $x \notin E$.

Définition

L'ensemble vide, noté \varnothing , est l'ensemble qui ne contient aucun élément : $\varnothing = \{\}$

Définitions

Soit A et B deux sous-ensembles d'un ensemble E.

• On dit que A est inclus dans B et on note $A\subseteq B$ ou $A\subset B$ si tout élément de A est élément de B :

$$\forall a \in E \qquad a \in A \implies a \in B$$

• On note A = B si $A \subset B$ et $B \subset A$:

$$\forall a \in E \qquad a \in A \iff a \in B$$

Remarques.

- On démontre souvent l'égalité de deux ensembles par double inclusion.
- L'assertion $A \not\subseteq B$ (A n'est pas inclus dans B) s'écrit :

$$\exists a \in A \qquad a \notin B$$

• Une inclusion $A \subseteq B$ est dite *stricte* si les deux ensembles sont différents. On note alors $A \subseteq B$.

Exemple. Les ensembles de nombres habituels vérifient les inclusions strictes suivantes :

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

Définition

Soit E un ensemble. Si A est un ensemble inclus dans E alors on dit que A est un sous-ensemble de E, ou une partie de E.

Notation

On note $\mathcal{P}(E)$ l'ensemble des parties de E.

Exemple. Si $E = \{a, b\}$, alors

$$\mathscr{P}(E)=$$

Exercice 1.

B. Opérations sur les parties d'un ensemble

Définitions

Soit A et B deux parties d'un ensemble E. On définit :

$$\overline{A} = E \setminus A = \mathcal{C}_E^A = \{ x \in E \mid x \notin A \}$$

le complémentaire de A (dans E)

$$A \cap B = \{ x \in E \mid x \in A \text{ et } x \in B \}$$

l'intersection de A et B

$$A \cup B = \{ x \in E \mid x \in A \text{ ou } x \in B \}$$

l'union ou la $r\acute{e}union$ de A et B

$$A \setminus B = A - B = \{x \in E \mid x \in A \text{ et } x \notin B\}$$
 la différence de A et B .



Proposition - Règles de calcul sur les parties d'une ensemble

Soit A, B, C trois parties d'un ensemble E.

Proposition (Lois de De Morgan)

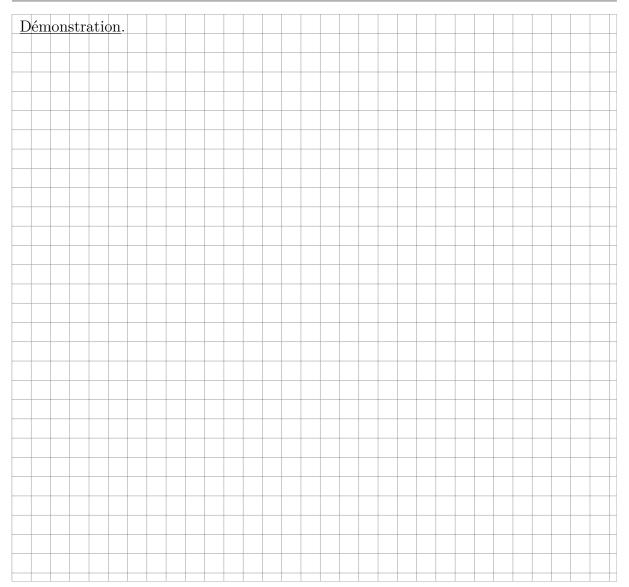
Soit A et B deux parties d'un ensemble E. Alors :

$\overline{A \cap B} =$	$\overline{A \cup B} =$

Proposition (Distributivités)

Soit $A,\,B,\,C$ trois parties d'un ensemble E. Alors :

$A \cap (B \cup C) =$			$A \cup$	J(B)	$\cap C)$:	=				



Résumé				
Soit A et B	deux parties d	l'un ensemble E . Ale	ors:	
$\forall x \in E$	$(x \in A \cap B)$	\iff)
	()			
$\forall x \in E$	$(x \in A \cup B$)
$\forall x \in E$	$(x \in \overline{A})$	\Leftrightarrow)	
	$A \subseteq B$	$\iff (\forall x \in E)$)
	A = B	$\iff (\forall x \in E)$		

Exercices 2, 3.

C. Produit cartésien

Définitions

Soit E et F deux ensembles. On appelle produit cartésien de E et de F l'ensemble :

$$E \times F = \{(x, y) \mid x \in E \text{ et } y \in F\}$$

Un élément (x, y) de $E \times F$ est appelé couple.

Définitions

Soit E_1, \ldots, E_n des ensembles. On appelle produit cartésien de ces ensembles l'ensemble :

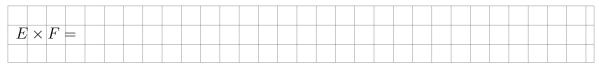
$$E_1 \times \cdots \times E_n = \{ (x_1, \dots, x_n) \mid \forall i = 1 \dots n \quad x_i \in E_i \}$$

On appelle n-uplets ses éléments.

Si tous les E_i sont égaux alors on note $E^n = E \times \cdots \times E$.

Exemples.

- On connaît déjà les produits cartésiens \mathbb{R}^2 et \mathbb{R}^3 .
- Soit $E = \{a, b, c\}$ et $F = \{1, 2\}$. Alors :



▶ Exercice 4.

II. Applications

A. Généralités

Définition

Soit E et F deux ensembles non-vides. Une application de E dans F associe à tout élément de E un unique élément de F.

On note:

$$f: E \longrightarrow F$$
$$x \longmapsto f(x)$$

Notation

On note $\mathcal{F}(E,F)$ ou F^E l'ensemble des applications de E dans F.

Définitions

Soit f une application de E dans F.

• Si A est une partie de E alors on appelle image de A par f et on note f(A) l'ensemble :

$$f(A) = \{ f(x) \mid x \in A \}$$

Il s'agit d'un sous-ensemble de $F: f(A) \subseteq F$.

• Si B est une partie de F alors on appelle image réciproque de B par f et on note $f^{-1}(B)$ l'ensemble :

$$f^{-1}(B) = \{ x \in E \mid f(x) \in B \}$$

Il s'agit d'une partie de $E: f^{-1}(B) \subseteq E$.

Remarque. Ainsi la donnée de $f:E\to F$ permet de définir deux nouvelles fonctions :

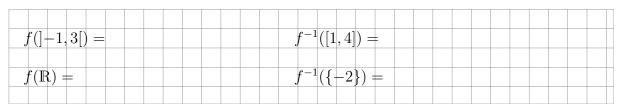
$$f: \mathscr{P}(E) \to \mathscr{P}(F)$$
 et $f^{-1}: \mathscr{P}(F) \to \mathscr{P}(E)$.

La première ne doit pas être confondue avec la fonction f de départ, même si par abus elle est notée de la même façon.

La seconde est définie même si f n'est pas bijective, et dans le cas où f est bijective il ne faut pas la confondre avec la réciproque de f.

Exemple. Pour la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$

$$x \longmapsto x^2$$



Méthode

Soit $x \in E$ et $y \in F$. Alors :

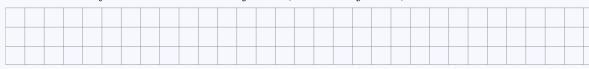
> Exercice 5.

B. Injections, surjections, bijections

1. Injection

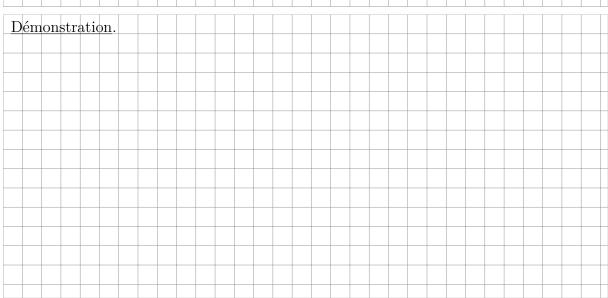
Définition

Une fonction $f: E \to F$ est une injection, ou est injective, si:



Proposition

Une fonction $f:E\to F$ est injective si et seulement si tout élément de F possède au plus un antécédent.



Exemples.

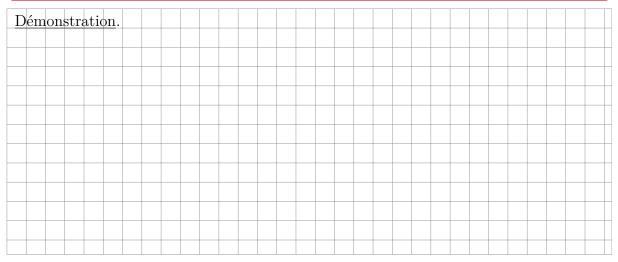
- $\exp : \mathbb{R} \to \mathbb{R}$ et $\ln : \mathbb{R}_+^* \to \mathbb{R}$ sont injectives.
- Id_E est injective.
- $f: \mathbb{R} \longrightarrow \mathbb{R}$ n'est pas injective $x \longmapsto x^2$

 $g: \mathbb{R}_+ \longrightarrow \mathbb{R}_+ \text{ est injective.}$ $x \longmapsto x^2$

• $\sin:\mathbb{R}\to\mathbb{R}$ n'est pas injective.

Proposition

Si $f: E \to F$ et $g: F \to G$ sont injectives alors $g \circ f$ est injective.

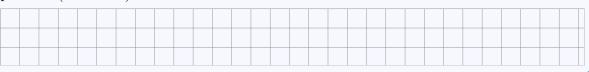


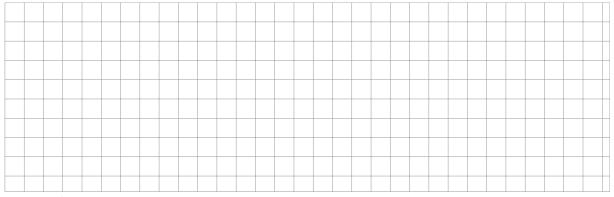
▶ Exercice 6.

2. Surjection

Définition

Une fonction $f:E\to F$ est une surjection, ou est surjective, si tout élément de F possède (au moins) un antécédent :





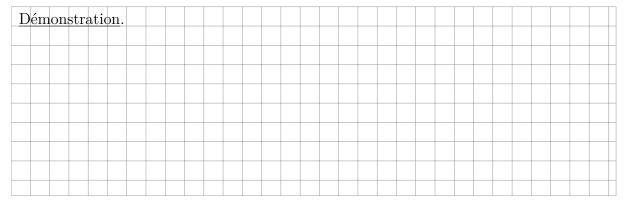
Exemples.

- exp : $\mathbb{R} \to \mathbb{R}$ n'est pas surjective, ln : $\mathbb{R}_+^* \to \mathbb{R}$ est surjective.
- Id_E est surjective.
- $f: \mathbb{R} \longrightarrow \mathbb{R}$ n'est pas surjective $g: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ est surjective. $x \longmapsto x^2$
- $\sin : \mathbb{R} \to \mathbb{R}$ n'est pas surjective.

Remarque. Une application peut être à la fois injective et surjective, ou ni injective ni surjective, etc.

Proposition

Si $f: E \to F$ et $g: F \to G$ sont surjectives alors $g \circ f$ est surjective.



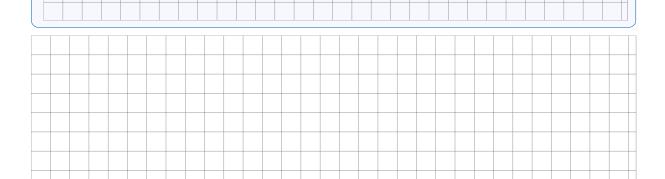
▶ Exercice 7.

3. Bijection

Définition

Une fonction $f:E\to F$ est une bijection, ou est bijective, si elle est injective et surjective.

De façon équivalente, f est bijective si tout élément de F possède un et un seul antécédent par f :



Exemples.

- $\exp : \mathbb{R} \to \mathbb{R}$ n'est pas bijective (alors que $\exp : \mathbb{R} \to \mathbb{R}_+^*$ l'est). $\ln \mathbb{R}_+^* \to \mathbb{R}$ est bijective.
- Id_E est bijective.
- $f: \mathbb{R} \longrightarrow \mathbb{R}$ n'est pas bijective $g: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ est bijective. $x \longmapsto x^2$

Proposition

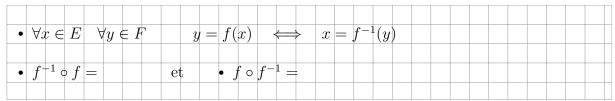
La composée de deux bijections est une bijection.

<u>Démonstration</u>. Cette propriété est conséquence des deux propriétés ci-dessus.

Définition

Soit $f: E \to F$ une bijection. On appelle fonction réciproque de f et on note f^{-1} la fonction de F dans E qui à tout $y \in F$ associe son antécédent par f.

Remarque. Ainsi:



Exemples.

- La réciproque de la fonction ln est la fonction $\exp : \mathbb{R} \to \mathbb{R}_+^*$.
- La réciproque de Id_E est Id_E .
- La réciproque de $g: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ est la fonction racine carrée $h: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ $x \longmapsto x^2$ $x \longmapsto \sqrt{x}$

Théorème

Soit $f:E\to F$ une fonction. Alors f est bijective si et seulement si il existe une fonction $g:F\to E$ telle que :

$$g \circ f = \mathrm{Id}_E$$
 et $f \circ g = \mathrm{Id}_F$

Dans ce cas g est la réciproque de f: $g = f^{-1}$.

Remarque.

Si f est bijective alors f^{-1} est bijective, et $(f^{-1})^{-1} = f$.

Méthode : Démontrer qu'une fonction est bijective

Trois possibilités pour démontrer qu'une application $f:E\to F$ est bijective et obtenir sa réciproque :

- 1. On résout l'équation f(x) = y d'inconnue x, où $y \in F$ est fixé.
 - Si cette équation admet une et une seule solution pour tout $y \in F$ alors f est bijective.

De plus cette solution est l'antécédent de y par f, donc $f^{-1}(y)$.

On a donc une expression de f^{-1} .

- 2. On exhibe une fonction $g: F \to E$ telle que $g \circ f = \mathrm{Id}_E$ et $f \circ g = \mathrm{Id}_F$, alors par théorème f est bijective et $g = f^{-1}$.
- 3. Si E est un intervalle de $\mathbb R$ et F est un sous-ensemble de $\mathbb R$ alors on peut appliquer le théorème de la bijection, voir ci-dessous.

Proposition (Suite de la précédente)

Si $f:E\to F$ et $g:F\to G$ sont deux bijections alors $g\circ f$ est bijective et sa réciproque est :

Exemple 2.

- (i) Soit α un réel non-nul. Alors la fonction $x \mapsto x^{\alpha}$ réalise une bijection de \mathbb{R}_{+}^{*} dans lui-même, de réciproque $x \mapsto x^{\frac{1}{\alpha}}$.
- (ii) Soit n un entier positif impair. Alors la fonction $x \mapsto x^n$ réalise une bijection de \mathbb{R} dans lui-même. Sa réciproque est la racine n-ème $x \mapsto x^{\frac{1}{n}} = \sqrt[n]{x}$, définie sur \mathbb{R} .

▶ Exercice 8.

C. Cas des fonctions réelles

Dans cette partie on suppose que E et F sont des parties de \mathbb{R} .

Remarques.

• Soit $f: E \to F$ une fonction. Alors l'image de E est :

$$f(E) = \{ f(x) \mid x \in E \} = \{ y \in F \mid \exists x \in E \mid f(x) = y \}$$

On peut restreindre l'ensemble d'arrivée de f en définissant une nouvelle fonction

$$\hat{f}: E \longrightarrow f(E)$$

 $x \longmapsto f(x)$

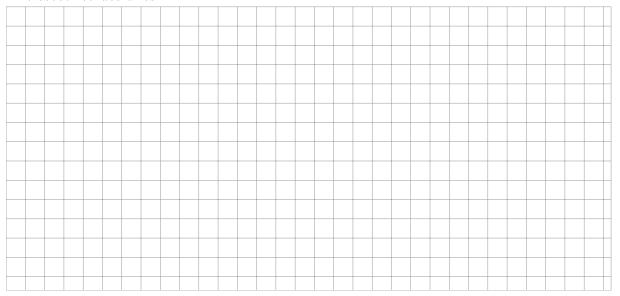
que l'on note souvent f par abus.

Cette fonction est surjective. On dit que f induit ou réalise une surjection $E \to f(E)$.

• Si f est strictement monotone alors f est injective, et donc f réalise une bijection de E dans f(E).

De plus la bijection réciproque est strictement monotone de même sens que f.

Les courbes de f et de f^{-1} sont symétriques l'une de l'autre par rapport à la première bissectrice des axes.



Corollaire du théorème des valeurs intermédiaires

Soit I un intervalle de \mathbb{R} et $f:I\to\mathbb{R}$ une fonction continue. Alors f(I) est un intervalle.

<u>Démonstration</u>. On note J = f(I).

Soit y et y' sont deux éléments de J. Alors il existe x et x' dans I tels que y = f(x) et y' = f(x').

Soit d compris entre y et y'. Comme I est un intervalle et f est continue alors d'après le théorème des valeurs intermédiaires il existe $c \in I$ tel que d = f(c). Ceci montre que $d \in f(I)$, i.e., $d \in J$.

Tous les réels compris entre y et y' sont dans J, ceci pour tout couple (y, y') d'éléments de J, donc J est un intervalle.

Remarque. L'intervalle J est déterminé grâce aux limites de f aux bornes de I. Par exemple :

- Si I = [a, b] et f est croissante alors J =
- Si I = [a, b] et f est décroissante alors J =
- Si I = [a, b[et f est croissante alors J = [

• etc.

Théorème - Continuité de la réciproque

Soit I un intervalle de \mathbb{R} et $f: I \to J$ une fonction bijective.

Si f est continue alors sa fonction réciproque $f^{-1}: J \to I$ est continue.

Exemple. La fonction $\ln : \mathbb{R}_+^* \to \mathbb{R}$ est bijective.

Sa réciproque est (par définition) la fonction exp, elle réalise une bijection de \mathbb{R} dans \mathbb{R}_+^* . Comme ln est strictement croissante et continue alors exp est strictement croissante et continue.

Théorème - Dérivabilité de la réciproque

Soit $f: I \to J$ une fonction bijective.

Si f est dérivable alors sa fonction réciproque $f^{-1}: J \to I$ est dérivable sur

$$J' = \{ y \in J \mid f' \circ f^{-1}(y) \neq 0 \}.$$

Sa dérivée est :

Méthode pour retrouver la formule

On sait que pour tout $x \in J$: $f \circ f^{-1}(x) = x$. Par dérivation :

Remarque. Si la dérivée s'annule en x_0 alors la fonction réciproque n'est pas dérivable en $y_0 = f(x_0)$.

Exemple 3. Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ $x \longmapsto x^2$.

▶ Exercice 9.

III. Relations binaires

A. Définition

Définition

Une relation binaire \mathcal{R} sur un ensemble E est une partie de $E \times E$. Au lieu de noter $(x,y) \in \mathcal{R}$ on note $x\mathcal{R}y$.

En d'autres termes, deux éléments de E peuvent être reliés ou non.

On peut aussi définir une relation binaire comme une application :

$$\mathcal{R}: E \times E \to \{\text{Vrai}, \text{Faux}\}$$

On note $x\Re y$ si $\Re(x,y)$ est vrai.

Exemples.

- Les relations $= < > \le >$ sont des relations binaires sur \mathbb{R} .
- Les relations $= \subset$ sont des relations binaires sur $\mathcal{P}(E)$.
- Les relations \mid (divise) et \equiv modulo 5 sont des relations binaires sur \mathbb{Z} .

B. Relation d'équivalence

Définition

Une relation d'équivalence sur un ensemble est une relation binaire

• réflexive :								
• symétrique :								
• transitive :								

Exemple 4.

- La relation d'égalité sur les réels est une relation d'équivalence sur R.
- La relation de congruence modulo 5 est définie sur $\mathbb Z$ par :

$$\forall (m,n) \in \mathbb{Z}^2 \qquad m \equiv n \quad [5] \qquad \Longleftrightarrow \qquad 5 \mid (m-n)$$

C'est une relation d'équivalence.

- On définit de même la relation de congruence modulo un réel sur R.
- La relation "être équivalente à" est une relation d'équivalence sur l'ensemble des suites.

Définition

Si \mathcal{R} est une relation d'équivalence sur E, et x est un élément de E, on appelle classe d'équivalence de x l'ensemble de tous les éléments y de E tels que $x\mathcal{R}y$.

Exemples.

- Pour la relation d'égalité sur les réels, les classes d'équivalence sont les singletons $\{x\}$ pour x parcourant \mathbb{R} .
- Pour la relation de congruence modulo 5 les classes d'équivalence sont au nombre de 5, on peut les noter $\{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}\}$.
- \bullet Soit E l'ensemble des élèves du lycée. La relation «est dans la même classe que» est une relation d'équivalence.

Les classes d'équivalence sont

• Soit E l'ensemble des stylos et crayons d'une trousse. Alors la relation «écrit de la même couleur que» est une relation d'équivalence.

Les classes d'équivalence sont

• Soit $\mathscr E$ la classe de tous les ensembles finis. Alors la relation «avoir le même nombre d'éléments que» est une relation d'équivalence sur $\mathscr E$.

Les classes d'équivalence sont

Proposition

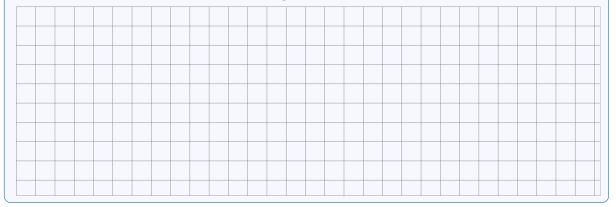
L'ensemble des classes d'équivalence de E forme une partition de E.

Définition

Soit E un ensemble, et $(A_i)_{i\in I}$ une famille de parties de E.

On dit que cette famille est une partition de E si :

- Les A_i sont disjoints : $\forall (i,j) \in I^2$ $i \neq j \implies A_i \cap A_j = \emptyset$
- Les A_i couvrent E tout entier : $\bigcup_{i \in I} A_i = E$



Remarque. Dans ce cas tout élément a de A appartient à un unique A_i :

$$\forall a \in E \qquad \exists! i \in I \quad a \in A_i$$

► Exercice 10.

C. Relation d'ordre

Définition

Une relation d'ordre sur un ensemble est une relation binaire

réflexive :
antisymétrique :
transitive :

Exemple 5.

- La relation \leq est une relation d'ordre sur \mathbb{R} .
- Soit E un ensemble. La relation d'inclusion \subseteq est une relation d'ordre sur $\mathscr{P}(E)$.
- La relation de divisibilité | sur $\mathbb N$:

$$\forall (a,b) \in \mathbb{N}^2$$
 $a \mid b \iff \exists k \in \mathbb{N} \quad b = ka$

est une relation d'ordre.

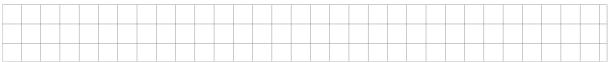
Définitions

Une relation d'ordre est dite totale si deux éléments peuvent toujours être comparés :

$$\forall (x,y) \in E^2$$
 $x \Re y$ ou $y \Re x$

Sinon elle est dite partielle.

Exemple 5 (suite). Parmi les trois relations d'ordre données ci-dessus, celles qui sont totales sont :



Définitions

Soit \leq une relation d'ordre sur un ensemble E.

Soit A une partie de E et m un élément de E. On dit que :

- m est un majorant de A pour la relation \leq si : $\forall a \in A \quad a \leq m$ Si de plus m appartient à A alors m est le maximum de A pour la relation \leq . On dit aussi que m est le plus grand élément de A pour la relation \leq .
- On définit de même un minorant et le minimum ou plus petit élément.

Remarques.

- Si une partie est majorée alors elle n'admet pas forcément de maximum.
- Si une partie admet un maximum alors il est unique, par antisymétrie.

Exemples. Soit E un ensemble.

• Alors $\mathcal{P}(E)$ possède un minimum et un maximum pour la relation \subseteq . Le minimum est \square et le maximum est \square

• Soit A et B deux parties de E. Alors le couple $\{A, B\}$ est une partie de $\mathcal{P}(E)$.

Cette partie admet pour majorant et pour minorant

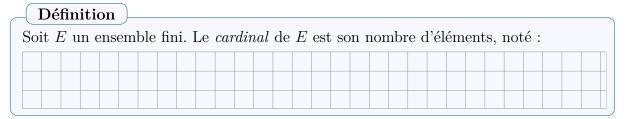
Exemple. L'ensemble N est muni de la relation d'ordre de divisibilité.

Alors \mathbb{N} admet un minimum et un maximum pour cette relation.

Le minimum est et le maximum est

IV. Ensembles finis

A. Cardinal



Propositions

Soit E un ensemble fini et F une partie de E. Alors :

- F est finie
- Card $F \leq \operatorname{Card} E$
- $\operatorname{Card} F = \operatorname{Card} E \iff F = E$.

Propositions

Soit E et F deux ensembles finis, et $f: E \to F$ une application.

- Si f est injective alors Card $E \leq \text{Card } F$.
- Si f est surjective alors Card $E \geqslant \operatorname{Card} F$.
- Si f est bijective alors $\operatorname{Card} E = \operatorname{Card} F$.
- Supposons que E et F sont de même cardinal. Alors :

Remarque. Deux ensembles, finis ou non, sont dits de même cardinal s'il existe une bijection de l'un dans l'autre.

Propositions

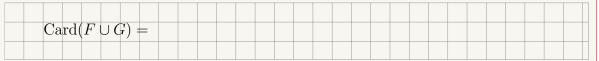
Soit E un ensemble fini.

• Pour toute partie F de E:

• Pour toutes parties F et G de E :

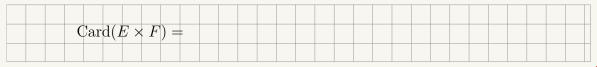
Corollaire

Si F et G sont deux parties finies **disjointes** d'un ensemble E alors :



Proposition

Si E et F sont deux ensembles finis alors :



<u>Démonstration</u>. Notons $E = \{x_1, \dots, x_n\}$ et $F = \{y_1, \dots, y_p\}$. Alors :

$$E \times F = \{ (x_i, y_j) \mid i = 1 \dots n \quad j = 1 \dots p \}$$

Cet ensemble est de cardinal np.

Corollaire

Soit E un ensemble fini, k un entier naturel. Alors :

<u>Démonstration</u>. En effet :

$$E^k = \{ (x_{i_1}, \dots, x_{i_k}) \mid \forall j = 1 \dots k \ 1 \le i_j \le n \}$$

Cet ensemble est de cardinal n^k .

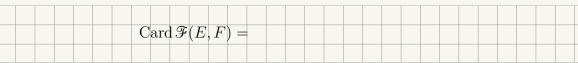
Notation (rappel)

Soit E et F deux ensembles.

On note $\mathcal{F}(E,F)$ l'ensemble des applications de E dans F.

Proposition

Soit E et F sont deux ensembles finis. Alors :



On note pour cette raison : $F^E = \mathcal{F}(E, F)$.

<u>Démonstration</u>. Notons $E = \{x_1, \ldots, x_n\}$. La donnée d'une application φ de E dans F est la donnée, pour tout $i = 1 \ldots n$, d'un élément de F. En d'autres termes, l'application

$$\mathscr{F}(E,F) \longrightarrow F^n$$

 $\varphi \longmapsto (\varphi(x_1),\ldots,\varphi(x_n))$

est une bijection. Sa réciproque est l'application :

$$F^n \longrightarrow \mathcal{F}(E, F)$$

$$(u_1, \dots, u_n) \longmapsto (\varphi : x_i \mapsto u_i)$$

Le cardinal est $\mathcal{F}(E,F)$ est donc égal à celui de F^n :

$$\operatorname{Card} \mathscr{F}(E, F) = \operatorname{Card}(F^n) = (\operatorname{Card} F)^n = (\operatorname{Card} F)^{\operatorname{Card} E}$$

Proposition

Si E est un ensemble fini à n éléments alors :

<u>Démonstration</u>. Pour tout partie F de E on appelle fonction caractéristique de F la fonction $\chi_F: E \to \{0,1\}$ qui à tout x de E associe 1 si $x \in F$ et 0 sinon.

Les applications

$$\chi: \mathcal{P}(E) \longrightarrow \mathcal{F}(E, \{0, 1\})$$
 et $\Psi: \mathcal{F}(E, \{0, 1\}) \longrightarrow \mathcal{P}(E)$
 $F \longmapsto \chi_F$ $\varphi \longmapsto \varphi^{-1}(\{1\})$

sont donc bijectives réciproques l'une de l'autre. Ceci montre que :

$$\operatorname{Card} \mathscr{P}(E) = \operatorname{Card} \mathscr{F}(E, \{0, 1\}) = 2^{\operatorname{Card} E}$$

Il s'agit bien du résultat attendu.

B. Listes

Cadre

Dans toute la suite on note E un ensemble à n éléments et k un entier naturel.

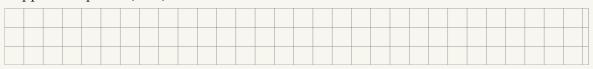
Définition

Une k-liste est une liste de k éléments, c'est-à-dire un k-uplet.

Remarque. L'ensemble des k-listes d'éléments de E est E^k , et le nombre de k-listes d'éléments de E est n^k .

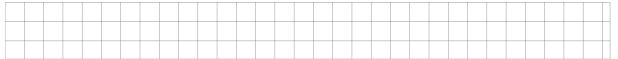


Supposons que $0 \le k \le n$. Le nombre de k-listes d'éléments **distincts** de E est :



<u>Démonstration</u>. Si (x_1, \ldots, x_k) est une k-liste d'éléments distincts de E, alors x_1 est un des n éléments de E, puis x_2 est un des n-1 éléments de $E-\{x_1\}$, etc.

Exemple 6. Soit F un ensemble à k éléments. Le nombre d'applications de F dans E est :



Le nombre d'applications injectives de F dans E est :



Le nombre d'applications bijectives de F dans E est :

Définition

Une permutation de E est une n-liste d'éléments distincts de E, c'est-à-dire une liste de tous les éléments de E.

Proposition

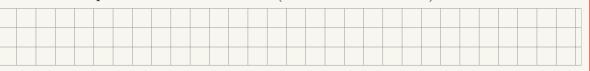
Le nombre de permutations de E est n!. C'est le nombre de façons d'ordonner E.

▶ Exercice 11.

C. Combinaisons

Proposition

Le nombre de parties à k éléments de E (ou de k-combinaisons) est :



C'est également le nombre de façons de choisir k éléments parmi n.

Notation

On note dorénavant $\mathcal{P}_k(E)$ l'ensemble des parties à k éléments de E.

Cet ensemble est donc de cardinal $\binom{n}{k}$

<u>Démonstration</u>. Soit $\mathcal{L}_k(E)$ l'ensemble des k-listes d'éléments distincts de E.

Soit F une partie de E à k éléments. Alors il existe k! permutations de F. L'ensemble de ces permutations est $\mathcal{L}_k(F)$.

Toute k-liste d'éléments distincts de E est obtenue de cette façon donc :

$$\mathcal{L}_k(E) = \bigcup_{F \in \mathcal{P}_k(E)} \mathcal{L}_k(F)$$

Si deux parties F et F' sont différentes, alors $\mathcal{L}_k(F)$ et $\mathcal{L}_k(F')$ sont disjointes, donc :

$$\operatorname{Card} \mathscr{L}_k(E) = \sum_{F \in \mathscr{P}_k(E)} \operatorname{Card} \mathscr{L}_k(F)$$

Ceci donne

$$\frac{n!}{(n-k)!} = k! \times \operatorname{Card}\left(\mathscr{P}_k(E)\right)$$

On obtient la formule annoncée.

Proposition - Formule du binôme

Soit a et b deux complexes. Alors :

<u>Démonstration</u>. On écrit :

$$(a+b)^n = (a+b)\cdots(a+b)$$

Chaque monôme du développement de ce produit contient n facteurs a ou b, donc est de la forme a^kb^{n-k} avec $0 \le k \le n$.

Le nombre de monômes $a^k b^{n-k}$ est le nombre de façons de choisir k facteurs a parmi les n facteurs a possibles, donc $\binom{n}{k}$.

Propositions

(i) Pour tout
$$(k,n) \in \mathbb{N}^2$$
 tels que $k \leqslant n$: $\binom{n}{k} = \binom{n}{n-k}$

$$\begin{array}{ll} (ii) \text{ Pour tout } n \in \mathbb{N}: & \sum_{k=0}^n \binom{n}{k} = 2^n \\ (iii) \text{ Pour tout } (k,n) \in \mathbb{N} \text{ tels que } 0 < k < n: \\ \binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k} \end{array}$$

(iii) Pour tout
$$(k, n) \in \mathbb{N}$$
 tels que $0 < k < n$: $\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$

<u>Démonstration</u>.

(i) L'application $\mathscr{P}(E) \longrightarrow \mathscr{P}(E)$ est une bijection (et même une involution). $F \longmapsto \overline{F}$

Si un sous-ensemble contient k éléments alors son complémentaire en contient n-k, i.e., l'image de $\mathcal{P}_k(E)$ par cette application est $\mathcal{P}_{n-k}(E)$, donc :

$$\operatorname{Card} \mathscr{P}_k(E) = \operatorname{Card} \mathscr{P}_{n-k}(E)$$

Ceci donne la formule.

(ii) L'union

$$\mathscr{P}(E) = \bigcup_{k=0}^{n} \mathscr{P}_{k}(E)$$

est disjointe, donc:

$$\operatorname{Card} \mathscr{P}(E) = \sum_{k=0}^{n} \operatorname{Card} \mathscr{P}_{k}(E)$$

Ceci donne la formule annoncée.

