Devoir à la Maison n°2

Problème 1.

On pose : $f(x) = xe^{-\frac{1}{x}}$.

1. Rappeler les justifications des propriétés suivantes :

$$\lim_{t \to 0} \frac{e^t - 1}{t} = 1 \quad \text{et} \quad \forall t \in \mathbb{R} \quad e^t \geqslant 1 + t$$

- 2. Déterminer l'ensemble de définition de f, ses variations et ses limites.
- 3. Soit g la restriction de f à \mathbb{R}_+^* .
 - (a) Justifier que g est prolongeable par continuité à \mathbb{R}_+ . On note encore g le prolongement obtenu.
 - (b) Étudier la dérivabilité en 0 de ce prolongement.
- 4. (a) Démontrer que la droite d'équation y = x 1 est asymtote à la courbe de f en $\pm \infty$.
 - (b) Déterminer la position de la courbe par rapport à cette asymptote.
- 5. Représenter l'allure de la courbe de f ainsi que ses asymptotes.

Problème 2.

- 1. Soit ω une racine 5^{ème} de l'unité différente de 1.
 - (a) Calculer $\sum_{k=0}^{4} \omega^k$.
 - (b) Soit $z_1 = \omega + \omega^4$ et $z_2 = \omega^2 + \omega^3$.

Démontrer que z_1 et z_2 satisfont l'équation : $z^2 + z - 1 = 0$.

- (c) En déduire les valeurs de $\cos \frac{2\pi}{5}$ et $\cos \frac{4\pi}{5}$, puis celle de $\cos \frac{\pi}{5}$.
- 2. (a) Résoudre l'équation $z^5 = i$.

Donner chaque solution sous la forme $re^{i\theta}$ où $\theta \in [0, 2\pi[$.

On note z_1, \ldots, z_5 ces solutions, rangées dans l'ordre croissant des arguments, et on note A_1, \ldots, A_5 les points images de z_1, \ldots, z_5 .

- (b) Tracer en bleu le polygône $A_1A_2A_3A_4A_5$ et en rouge le polygône $A_1A_3A_5A_2A_4$.
- (c) Calculer le quotient $\frac{A_1A_3}{A_1A_2}$