Chapitre B1 Nombres complexes

I. Généralités

A. Nombres complexes

Définition

Soit i un nombre vérifiant $i^2 = -1$. On note $\mathbb C$ l'ensemble des nombres x+iy où x et y sont deux réels :

 $\mathbb{C} = \left\{ x + iy \mid (x, y) \in \mathbb{R}^2 \right\}$

Ces nombres sont appelés nombres complexes.

Exemples. 0, 1, i, 3+4i, 25, $\frac{7}{4}-\frac{i}{2}$, $\sqrt{2}-5i$, π sont des nombres complexes.

Remarque.

- (i) L'ensemble $\mathbb C$ est muni d'une addition et d'une multiplication.
- (ii) Tout nombre complexe z possède un opposé -z.
- (iii) Tout nombre complexe z non-nul possède un inverse $\frac{1}{z}$.
- (iv) On définit ainsi également la soustraction et la division par un complexe non-nul.

Démonstration du (iii). Soit z=x+iy avec $(x,y)\neq (0,0)$. Alors $x^2+y^2\neq 0$ et :

$$\frac{1}{z} = \frac{1}{x+iy} = \frac{x-iy}{x^2+y^2} = \frac{x}{x^2+y^2} - i\frac{y}{x^2+y^2}.$$

L'inverse de z est bien défini, et c'est un nombre complexe.

Définition

Soit z=x+iy est un nombre complexe avec x et y réels. On dit alors que x est la partie réelle et y est la partie imaginaire de z.

On note
$$x = \text{Re}(z)$$
 et $y = \text{Im}(z)$.

Exemples.

$$Re(3+2i) = 3$$
 $Im(3+2i) = 2$ $Re(i) = 0$ $Im(i) = 1$

Attention : Im(z) est réel.

Définition

- Si Im(z) = 0 alors on dit que z est réel.
- Si Re(z) = 0 alors on dit que z est imaginaire pur.
- On note $\mathbb R$ l'ensemble des réels, $i\mathbb R$ l'ensemble des imaginaires purs.

Définition

Le plan est muni d'un repère orthonormé (O, \vec{u}, \vec{v}) .

- L'image de z = x + iy est le point M du plan de coordonnées (x, y).
- On dit alors que z est l'affixe de M.
- Les deux axes du repère sont l'axe des réels et l'axe des imaginaires purs.



Remarque. Soit z et z' sont deux complexes, d'images M et M'. Alors :

- z + z' admet pour image le point M'' tel que $\overrightarrow{OM} + \overrightarrow{OM'} = \overrightarrow{OM''}$.
- Le vecteur $\overrightarrow{MM'}$ admet pour affixe z' z.

B. Conjugaison

Définition

Soit z = x + iy un complexe. Le *conjugué* de z est le complexe :

$$\overline{z} = x - iy$$

Remarque. Les images de z et de \overline{z} sont symétriques par rapport à l'axe des réels. Exemples.

$$\overline{4+3i} = 4-3i$$
 $\overline{1-6i} = 1+6i$ $\overline{5} = 5$ $\overline{7i} = -7i$

$$\overline{1 - 6i} = 1 + 6i$$

$$\overline{5} = 5$$

$$\overline{7i} = -7i$$

Propositions

- Pour tout complexe $z: \overline{\overline{z}} = z$ (on dit que la conjugaison est une *involution*).
- Pour tous complexes z_1 et z_2 :

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \qquad \overline{z_1 - z_2} = \overline{z_1} - \overline{z_2} \qquad \overline{z_1 z_2} = \overline{z_1} \, \overline{z_2}$$

$$\overline{z_1 z_2} = \overline{z_1} \, \overline{z_2}$$

$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$

Ceci en supposant que z_2 est non-nul dans le dernier cas.

• Pour tout complexe z et tout entier naturel n:

$$\overline{nz} = n\overline{z} \qquad \overline{z^n} = \overline{z}^n$$

<u>Démonstration</u>. Il suffit de tout écrire. Par exemple :

$$\overline{z_1 z_2} = \overline{(x_1 + iy_1)(x_2 + iy_2)}$$

$$= \overline{(x_1 x_2 - y_1 y_2) + i(x_1 y_2 + y_1 x_2)} = (x_1 x_2 - y_1 y_2) - i(x_1 y_2 + y_1 x_2)$$

$$= (x_1 - iy_1)(x_2 - iy_2) = \overline{z_1} \overline{z_2}$$

Proposition

Pour tout complexe z:

$$\operatorname{Re} z = \frac{z + \overline{z}}{2}$$
 et $\operatorname{Im} z = \frac{z - \overline{z}}{2i}$

$$\operatorname{Im} z = \frac{z - z}{2i}$$

$$z \in \mathbb{R} \iff \overline{z} = z \quad \text{et} \quad z \in i\mathbb{R} \iff \overline{z} = -z$$

$$\iff \overline{z} = -z$$

<u>Démonstration</u>. Immédiat.

Exercice 1.

C. Module

Définition

Soit z un nombre complexe. Le module de z est :

$$|z| = \sqrt{z\overline{z}}$$

Si z = x + iy avec x et y réels alors :

$$|z| = \sqrt{x^2 + y^2}$$

Remarques.

- Le module est bien défini, c'est un réel positif : $\forall z \in \mathbb{C} \ |z| \in \mathbb{R}_+$
- $\bullet\,$ Si z est réel alors son module coïncide avec sa valeur absolue.
- Il représente la distance du point image M_z à l'origine.

Proposition

Soit A et B deux points du plan, d'affices respectives a et b.

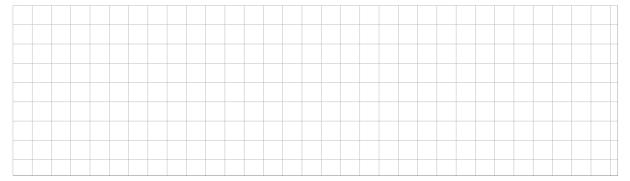
Alors la distance de A à B est |b-a|.

 $\overrightarrow{Demonstration}. \ \text{En effet} \ \overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{OB} - \overrightarrow{OA} \ \text{donc} \ \overrightarrow{AB} \ \text{a pour affixe} \ b - a. \quad \Box$

Définition

Soit A un point d'affixe a, r un réel positif. On définit :

- Le cercle de centre A et de rayon r : $\mathscr{C} = \{z \in \mathbb{C} \mid |z a| = r\}$
- Le disque ouvert de centre A et de rayon r : $\mathfrak{D} = \{z \in \mathbb{C} \mid |z-a| < r\}$
- Le disque fermé de centre A et de rayon r: $\overline{\mathfrak{D}} = \{z \in \mathbb{C} \mid |z a| \leqslant r\}$



Proposition

Soit z et z^\prime deux complexes, n un entier naturel. Alors :

$$|zz'| = |z||z'|$$
 $\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}$ si $z' \neq 0$ $|z^n| = |z|^n$

<u>Démonstration</u>. (Exercice) Il suffit de tout écrire.

Proposition (Inégalité triangulaire)

Pour tous complexes z et z':

$$||z| - |z'|| \le |z + z'| \le |z| + |z'|$$

Remarque. En remplaçant z' par -z' on obtient une autre inégalité triangulaire :

$$||z| - |z'|| \le |z - z'| \le |z| + |z'|$$

Lemme

Pour tout complexe z:

(i)
$$|\overline{z}| = |z|$$
 et (ii) $-|z| \le \operatorname{Re} z \le |z|$
 $-|z| \le \operatorname{Im} z \le |z|$

Démonstration.

- (i) Par définition du module : $|\overline{z}| = \sqrt{\overline{z}} = \sqrt{\overline{z}z} = |z|$.
- (ii) On raisonne par équivalences successives, en utilisant la propriété

$$\forall x \in \mathbb{R} \quad \forall a \in \mathbb{R}_+ \qquad -a \leqslant x \leqslant a \quad \Longleftrightarrow \quad x^2 \leqslant a^2$$

appliquée à a = |z|.



Proposition

Soit $n \in \mathbb{N}$ et z_1, \dots, z_n des complexes. Alors :

$$\left| \sum_{k=1}^{n} z_k \right| \leqslant \sum_{k=1}^{n} |z_k|$$

Démonstration. Par récurrence sur n.

II. Angles

A. L'ensemble \mathbb{U}

Notation

On note $\mathbb U$ l'ensemble des nombres complexes de module 1:

$$\mathbb{U}=\left\{z\in\mathbb{C}\mid\,|z|=1\right\}=\left\{x+iy\in\mathbb{C}\mid\,x^2+y^2=1\right\}$$

Remarque. L'ensemble des images des éléments de U est le cercle trigonométrique.

Propositions

- Soit x et y deux réels tels que $x^2 + y^2 = 1$. Alors il existe $\theta \in \mathbb{R}$ tel que $x = \cos \theta$ et $y = \sin \theta$.
- Pour tout élément z de \mathbb{U} il existe $\theta \in \mathbb{R}$ tel que $z = \cos \theta + i \sin \theta$.

Définition

Pour tout $\theta \in \mathbb{R}$ on pose :

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Ainsi \mathbb{U} est l'ensemble des $e^{i\theta}$ où $\theta \in \mathbb{R}$:

$$\mathbb{U} = \left\{ e^{i\theta} \mid \theta \in \mathbb{R} \right\}$$

Proposition

Pour tous réels θ et θ' : $e^{i(\theta+\theta')} = e^{i\theta}e^{i\theta'}$

<u>Démonstration</u>. Ceci est conséquence des formules de somme de trigonométrie.

B. Argument

Remarque. Soit z un nombre complexe non-nul. Soit r son module.

Alors $\frac{z}{r}$ est bien défini, car r est non-nul. De plus il est de module 1 car $\left|\frac{z}{r}\right| = \frac{|z|}{r} = 1$.

Ceci montre que $\frac{z}{r}$ appartient à \mathbb{U} et ainsi il existe $\theta \in \mathbb{R}$ tel que : $\frac{z}{r} = e^{i\theta}$

Il existe donc $\theta \in \mathbb{R}$ tel que : $z = re^{i\theta}$

Définition

Soit z un complexe non-nul, et r son module.

Un argument de z est un réel θ tel que $z = re^{i\theta}$.

On note $\theta = \arg z$.

Remarque. La notation arg z est dangereuse car l'argument est défini à 2π près. On peut avoir par exemple en même temps arg $z=\frac{\pi}{6}$ et arg $z=\frac{13\pi}{6}$.

On dit que $\frac{\pi}{6}$ est un argument de z.

6

Proposition

Le module d'un complexe est unique, alors que son argument est défini à 2π près. En d'autres termes :

Soit r et r' sont deux réels strictement positifs et θ et θ' sont deux réels. Alors :

$$re^{i\theta} = r'e^{i\theta'}$$
 \iff $r = r'$ et $\exists k \in \mathbb{Z} \quad \theta' = \theta + 2k\pi$
 \iff $r = r'$ et $\theta' \equiv \theta$ [2 π]

Définition

Soit $z = x + iy = re^{i\theta}$ un complexe, avec x, y, r, θ réels, r strictement positif.

- L'écriture z = x + iy est la forme algébrique de z.
- L'écriture $z = re^{i\theta}$ est une forme exponentielle de z.

Proposition (Passage d'une forme à l'autre)

Avec les notations de la définition précédente :

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} \begin{cases} r = \sqrt{x^2 + y^2} \\ \theta \text{ est un r\'eel tel que } \begin{cases} \frac{x}{r} = \cos \theta \\ \frac{y}{r} = \sin \theta \end{cases}$$

▶ Exercices 2, 3.

Proposition

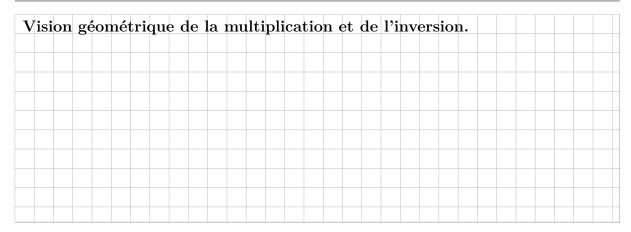
Soit z et z' deux complexes non-nuls, n un entier. Alors modulo 2π :

$$\arg(zz') \equiv \arg(z) + \arg(z')$$
 $\arg\left(\frac{z}{z'}\right) \equiv \arg z - \arg z'$ $\arg(z^n) \equiv n \arg z$

<u>Démonstration</u>. Si $z = re^{i\theta}$ et $z' = r'e^{i\theta'}$ alors :

$$zz' = rr'e^{i(\theta + \theta')}$$
 donc $\arg(zz') = \theta + \theta' = \arg z + \arg z'$

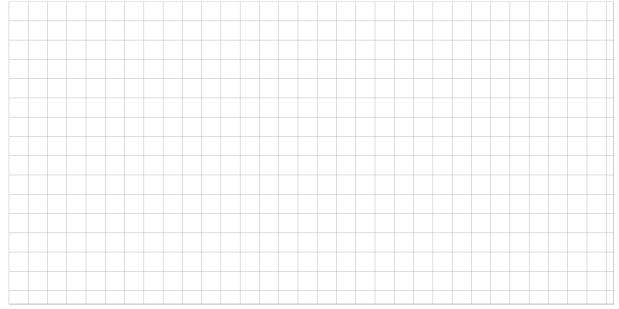
Les autres formules se démontrent de la même façon.



C. Aspect dynamique

Définitions

- Soit b un complexe. Alors l'application $z \mapsto z + b$ est la translation de vecteur \vec{u} , où \vec{u} est le vecteur d'affixe b.
- Soit k un réel non-nul. Alors l'application $z\mapsto kz$ est l' $homoth\acute{e}tie$ de centre O et de rapport k.
- Soit θ un réel. Alors l'application $z \mapsto e^{i\theta}z$ est la rotation de centre O et d'angle θ .
- L'application $z \mapsto \overline{z}$ est la symétrie d'axe (Ox).



Remarque. Soit a un complexe non-nul, de forme exponentielle $a = re^{i\theta}$.

Alors l'application $z\mapsto az$ est la composée de la rotation de centre O et d'angle θ avec l'homothétie de centre O et de rapport r.

Définition

Soit a et b deux complexes, a étant non-nul. L'application $f:z\mapsto az+b$ est appelée $similitude\ directe$ du plan.

D. Applications à la trigonométrie

Rappel

$$\forall \theta \in \mathbb{R} \qquad e^{i\theta} = \cos \theta + i \sin \theta$$

Exemple 1. Calcul de $\cos 2\theta$ et $\sin 2\theta$ en fonction de $\cos \theta$ et $\sin \theta$.

▶ Exercice 4.

Proposition - Formules d'Euler

$$\forall \theta \in \mathbb{R}$$
 $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ et $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

Démonstration. En effet :

$$\cos \theta = \operatorname{Re}(e^{i\theta}) = \frac{e^{i\theta} + \overline{e^{i\theta}}}{2}$$
 et $\sin \theta = \operatorname{Im}(e^{i\theta}) = \frac{e^{i\theta} - \overline{e^{i\theta}}}{2i}$ avec $\overline{e^{i\theta}} = e^{-i\theta}$ \square

Exemple 2 (Linéarisation).

- (i) Linéariser $\cos^3 t \sin t$ et calculer : $\int_0^{\frac{\pi}{2}} \cos^3 t \sin t \, dt$
- (ii) Calculer: $\int_0^{\frac{\pi}{2}} \sin 2t \, \cos 3t \, \sin 4t \, dt$

▶ Exercice 5.

Remarque. Par linéarisation on obtient les formules de transformation de produit en somme :

$$\forall (x,y) \in \mathbb{R}^2 \qquad \cos x \cos y = \frac{1}{2}(\cos(x+y) + \cos(x-y))$$
$$\sin x \sin y = \frac{1}{2}(\cos(x-y) - \cos(x+y))$$
$$\sin x \cos y = \frac{1}{2}(\sin(x+y) + \sin(x-y))$$

Mais elle découlent plus rapidement des formules de sommes.

Proposition - Formules en $t = \tan \frac{x}{2}$

Soit $x \in \mathbb{R} \setminus \{\pi + 2k\pi \mid k \in \mathbb{Z}\}$, si bien que $t = \tan \frac{x}{2}$ existe. Alors :

$$\cos x = \frac{1 - t^2}{1 + t^2}$$
 $\sin x = \frac{2t}{1 + t^2}$ $\tan x = \frac{2t}{1 - t^2}$

Méthode (Factorisation par l'angle moitié, ou par l'angle moyen)

Soit $\theta \in \mathbb{R}$.

$$1 + e^{i\theta} =$$

Soit p et q deux réels.

$$e^{ip} + e^{iq} =$$

On obtient des formules similaires pour $1 - e^{i\theta}$ et $e^{ip} - e^{iq}$.

Remarque. Cette méthode permet d'obtenir les formules de transformation de somme en produit:

$$\forall (p,q) \in \mathbb{R}^2$$

$$\forall (p,q) \in \mathbb{R}^2$$
 $\cos p + \cos q = 2\cos \frac{p+2}{2}\cos \frac{p-q}{2}$

$$\cos p - \cos q = -2\sin\frac{p+2}{2}\sin\frac{p-q}{2}$$

$$\sin p + \sin q = 2\sin \frac{p+2}{2}\cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2\cos \frac{p+2}{2}\sin \frac{p-q}{2}$$

Exercice 6.

Exemple 3. Soit θ un réel non multiple de 2π . Simplifier la somme $S_n = \sum_{k=0}^{n} \cos k\theta$.

Proposition - Transformation de Fresnel

(Augustin Fresnel, France, 1788 - 1827) Soit a et b deux réels. On considère la fonction f définie par :

$$\forall t \in \mathbb{R}$$
 $f(t) = a\cos t + b\sin t$

Alors il existe deux réels A et φ tels que :

$$\forall t \in \mathbb{R}$$
 $f(t) = A\cos(t - \varphi)$

<u>Démonstration</u>. On divise f(t) par $A = \sqrt{a^2 + b^2}$:

$$\frac{f(t)}{A} = a'\cos t + b'\sin t$$
 avec $a' = \frac{a}{A}$ et $b' = \frac{b}{A}$

Comme $a'^2 + b'^2 = 1$, alors il existe un réel φ tel que $a' = \cos \varphi$ et $b' = \sin \varphi$, d'où le résultat.

D'un autre point de vue on peut poser z = a + ib, puis A = |z| et $\varphi = \arg z$. Alors :

$$f(t) = A\cos\varphi\cos t + A\sin\varphi\sin t = A\cos(t-\varphi)$$

Exemple 4. Quels sont les extrema de la fonction $f: t \mapsto 2\cos t + 3\sin t$?

Exercice 7.

E. Applications à la géométrie du plan

Lemme

Soit \vec{u} et \vec{u}' deux vecteurs, d'affixes non-nulles z et z'. Alors l'argument $\frac{z'}{z}$ est une mesure de l'angle (\vec{u}, \vec{u}') .

<u>Démonstration</u>. Soit $a=\frac{z'}{z}$ et soit $a=re^{i\theta}$ sa forme exponentielle.

Alors $z' = re^{i\theta}z$, donc $\arg z' = \theta + \arg z$.

Ceci montre que l'angle (\vec{u}, \vec{u}') est de mesure θ .

Proposition

Soit A, B, C, D quatre points du plan, d'affixes respectives a, b, c, d, avec $a \neq b$ et $c \neq d$.

Alors $\frac{d-c}{b-a}$ admet • pour argument une mesure de l'angle $(\overrightarrow{AB}, \overrightarrow{CD})$,

• pour module le quotient $\frac{CD}{AB}$.

Corollaire

Avec les mêmes notations :

- Les droites (AB) et (CD) sont parallèles si et seulement si $\frac{d-c}{b-a}$ est réel.
- Les droites (AB) et (CD) sont perpendiculaires si et seulement si $\frac{d-c}{b-a}$ est imaginaire pur.
- Les longueurs AB et CD sont égales si et seulement si $\frac{d-c}{b-a}$ appartient à \mathbb{U} .

Exemple. Soit A, B, C trois points distincts. Alors :

Les points A, B, C sont alignés si et seulement si	$\frac{c-a}{b-a} \in$
Le triangle ABC est rectangle en A si et seulement si	$\frac{c-a}{b-a} \in$
Le triangle ABC est isocèle $(AB = AC)$ si et seulement si	$\frac{c-a}{b-a} \in$
Le triangle ABC est équilatéral si et seulement si	$\frac{c-a}{b-a}$

▶ Exercice 8.

III. Équations algébriques

A. Équations du second degré

Lemme

Tout nombre complexe non-nul possède exactement deux racines carrées distinctes.

<u>Démonstration</u>. Soit a un complexe non nul de forme exponentielle $a = re^{i\theta}$.

Soit z une racine carrée de a, de forme exponentielle $z=se^{i\varphi}$.

Alors $z^2 = a$, ce qui donne :

$$s^2 e^{2i\varphi} = re^{i\theta}$$

Donc $s^2 = r$ et $2\varphi = \theta + 2k\pi$ où $k \in \mathbb{Z}$.

Ainsi $s = \sqrt{r}$ car s est positif et $\varphi = \frac{\theta}{2} + k\pi$.

Ceci montre que $z=\sqrt{r}e^{i\frac{\theta}{2}}$ ou $z=-\sqrt{r}e^{i\frac{\theta}{2}}$: on a obtenu deux solutions distinctes, donc il existe exactement deux racines carrées de a.

Théorème

Soit a, b, c trois complexes, avec a non-nul. On note (C) l'équation :

$$az^2 + bz + c = 0$$

Soit $\Delta = b^2 - 4ac$, que l'on appelle discriminant de l'équation (C). Soit η une racine carrée de Δ . Alors l'équation (C) admet pour solutions :

$$z_1 = \frac{-b+\eta}{2a}$$
 et $z_2 = \frac{-b-\eta}{2a}$

Ces solutions sont égales si et seulement si $\Delta = 0$.

Attention

On ne peut pas écrire $\sqrt{\Delta}$ si Δ n'est pas un réel positif.

Démonstration. Page suivante.

Exemple 5. Résoudre l'équation : $z^2 - (3 - 8i)z - (13 + 11i) = 0$

<u>Démonstration</u>. On utilise la forme canonique d'une expression du second degré :

Méthode : calcul de la racine carrée d'un complexe Δ

- Si la forme exponentielle est connue : $\Delta = re^{i\theta}$, alors il suffit de poser $\eta = \sqrt{r}e^{i\frac{\theta}{2}}$.
- Sinon on pose $\eta = a + ib$ et on résout $\eta^2 = \Delta$. On ajoute l'équation $|\eta|^2 = a^2 + b^2 = |\Delta|$.

Exemple 6. Donner une racine carrée des complexes suivants.

$$\Delta_1 = -4$$
 $\Delta_2 = 5$ $\Delta_3 = \frac{1}{2} + i\frac{\sqrt{3}}{2}$ $\Delta_4 = 2i$ $\Delta_5 = -i$ $\Delta_6 = -2 - 2i\sqrt{3}$

Proposition

Si z_1 et z_2 sont les deux racines de l'équation $az^2+bz+c=0$ alors :

$$z_1 + z_2 = -\frac{b}{a} \qquad \text{et} \qquad z_1 z_2 = \frac{c}{a}$$

<u>Démonstration</u>. À faire en exercice.

> Exercice 9.

B. Racines de l'unité

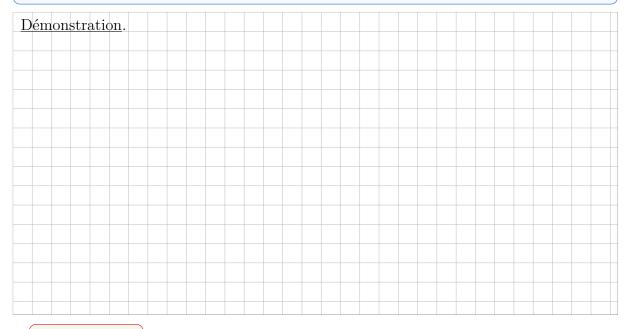
Proposition

Pour tout $n \in \mathbb{N}^*$ l'équation $z^n = 1$ admet exactement n solutions distinctes.

Définition

Ces n solutions sont appelées $racines\ n$ -èmes de l'unité. Leur ensemble est noté \mathbb{U}_n :

$$\mathbb{U}_n = \{ z \in \mathbb{C} \mid z^n = 1 \}$$



Proposition

$$\mathbb{U}_n = \left\{ e^{ik\frac{2\pi}{n}} \mid k = 0, \dots, n-1 \right\}$$

Exemple 7. Représentation graphique de \mathbb{U}_1 , \mathbb{U}_2 , \mathbb{U}_3 et \mathbb{U}_4 . On note $j=e^{i\frac{2\pi}{3}}$.

Remarques.

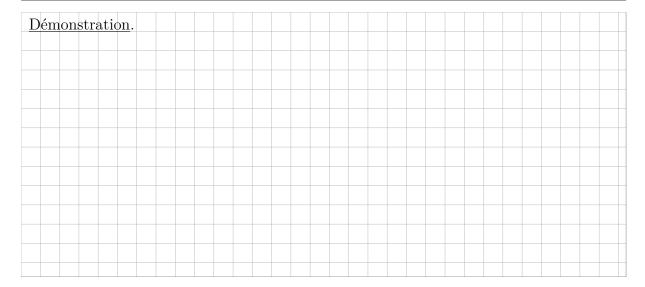
- Les racines n-èmes de l'unité forment un polygone régulier à n côtés, inscrit dans le cercle trigonométrique.
- L'ensemble \mathbb{U}_n est stable par multiplication et passage à l'inverse.

Exercice 10.

Théorème - Somme et produit des racines de l'unité

La somme des racines n-èmes de l'unité est nulle si n > 1. Leur produit vaut 1 si n est impair, -1 sinon.

$$\forall n \geqslant 2$$
 $\sum_{\zeta \in \mathbb{U}_n} \zeta = 0$ et $\forall n \geqslant 1$ $\prod_{\zeta \in \mathbb{U}_n} \zeta = (-1)^{n-1}$



C. Racines n-èmes

Rappel : racines n-èmes dans \mathbb{R} .

- Soit a un réel non-nul.
 - Si n est impair alors l'équation $x^n = a$ admet une unique solution.
 - Si n est pair alors elle en admet deux si a est positif et aucune si a est négatif.
- Soit a un réel positif.
 - Alors l'équation $x^n = a$ admet une et une seule solution positive. On appelle celle-ci racine n-ème de a et on la note $\sqrt[n]{a}$.

Proposition

Soit n un entier naturel non nul $(n \in \mathbb{N}^*)$.

Alors tout complexe non-nul admet exactement n racines n-èmes distinctes.

Méthode. Obtenir les racines n-èmes de $a \in \mathbb{C}^*$

- Déterminer la forme exponentielle $a = re^{i\theta}$.
- En déduire une première racine n-ème : $b = \sqrt[n]{r}e^{i\frac{\theta}{n}}$.
- Les racines n-èmes de a sont les complexes $b\zeta$ où $\zeta \in \mathbb{U}_n$.

Exemple 8. Résoudre l'équation : $z^3 = 8i$

Remarque. Les solutions forment encore un polygone régulier à n côtés, mais il n'est pas en général inscrit dans le cercle trigonométrique.

▶ Exercice 11.

IV. L'exponentielle complexe

Définition

Soit z = x + iy un complexe, avec x et y réels. On note

$$e^z = e^x e^{iy}$$

et on appelle exponentielle de z ce complexe.

La fonction $\exp: \mathbb{C} \longrightarrow \mathbb{C}$ ainsi définie est appelée exponentielle complexe.

$$z \longmapsto e^z$$

Propositions

- Pour tout $z \in \mathbb{C}$: $e^z \neq 0$
- Pour tout $(z, z') \in \mathbb{C}^2$: $e^{z+z'} = e^z e^{z'}$ et $e^{z-z'} = \frac{e^z}{e^{z'}}$
- Pour tout $z \in \mathbb{C}$: $\overline{e^z} = e^{\overline{z}}$
- Pour tout $z = x + iy \in \mathbb{C}$: $|e^z| = e^x$ et $\arg(e^z) = y$

Cette dernière proposition montre que la forme algébrique de z donne la forme exponentielle de e^z .

Démonstration. Laissée en exercice.

Proposition

Tout complexe non-nul possède un antécédent par l'application exponentielle.

En d'autres termes l'application exp : $\mathbb{C} \to \mathbb{C}^*$ est surjective.

<u>Démonstration</u>. Soit $z \in \mathbb{C}^*$. Alors on peut écrire $z = re^{i\theta}$ avec r strictement positif, donc $z = e^a$ avec $a = \ln r + i\theta$.

Remarque. Soit z et z' deux complexes.

Alors $e^z = e^{z'}$ si et seulement si il existe un entier k tel que $z = z' + 2ik\pi$.

Ceci montre que l'on n'a pas unicité de l'antécédent : l'application n'est pas $injective,\ i.e.,$ l'égalité $e^z=e^{z'}$ n'implique pas que z=z'.

▶ Exercice 12.