Corrigé du Devoir à la Maison n°1

Exercice 1.

1. On sait que:

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$

Par soustraction de ces deux formules et division par 2 on obtient :

$$\cos a \sin b = \frac{1}{2}(\sin(a+b) - \sin(a-b)).$$

2. Par linéarité :

$$S_n(x)\sin x = \sum_{k=1}^n \cos((2k-1)x)\sin x$$

D'après la formule de la question précédente, en remarquant que 2k-2=2(k-1) :

$$S_n(x)\sin x = \sum_{k=1}^n \left(\frac{1}{2}(\sin(2kx) - \sin(2(k-1)x))\right)$$

Par linéarité :

$$S_n(x)\sin x = \frac{1}{2} \left(\sum_{k=1}^n \sin(2kx) - \sum_{k=1}^n \sin(2(k-1)x) \right)$$

Le changement d'indice $\ell=k-1$ dans la seconde somme donne :

$$S_n(x)\sin x = \frac{1}{2} \left(\sum_{k=1}^n \sin(2kx) - \sum_{\ell=0}^{n-1} \sin(2\ell x) \right)$$

Comme ℓ est une variable muette alors on peut écrire :

$$S_n(x)\sin x = \frac{1}{2} \left(\sum_{k=1}^n \sin(2kx) - \sum_{k=0}^{n-1} \sin(2kx) \right)$$

Ceci se simplifie par télescopage en :

$$S_n(x)\sin x = \frac{1}{2}(\sin(2nx) - \sin 0)$$

Finalement:

$$S_n(x)\sin x = \frac{1}{2}\sin(2nx)$$

3. Si x n'est pas un multiple de π alors $\sin x$ est non-nul et donc on peut écrire :

$$\forall x \in \mathbb{R} \setminus \pi \mathbb{Z}$$
 $S_n(x) = \frac{\sin(2nx)}{2\sin x}$

Si x est un multiple de π alors il existe $\ell \in \mathbb{Z}$ tel que $x = \ell \pi$. On calcule directement $S_n(x)$ grâce à sa définition.

Pour tout $k \in \mathbb{N}$: $\cos((2k-1)x) = \cos(2k\ell\pi - \ell\pi)$

Comme $k\ell$ est un entier alors $2k\ell\pi$ est un multiple de 2π . La fonction cosinus est 2π -périodique donc :

$$\cos(2k\ell\pi - \ell\pi) = \cos(-\ell\pi) = \cos(\ell\pi) = (-1)^{\ell}$$

On peut donc en déduire, dans le cas où x est un multiple de π :

$$\forall x \in \pi \mathbb{Z}$$
 $S_n(x) = n \cos(x) = n(-1)^{\frac{x}{\pi}}$

4. (a) On remarque que:

$$\cos\frac{\pi}{5} + \cos\frac{3\pi}{5} = \sum_{k=1}^{2} \cos\left((2k-1)\frac{\pi}{5}\right) = S_2\left(\frac{\pi}{5}\right)$$

La formule de la question (3) s'applique car $x = \frac{\pi}{5}$, ce n'est pas un multiple de π . Elle donne :

$$S_2\left(\frac{\pi}{5}\right) = \frac{\sin\frac{4\pi}{5}}{2\sin\frac{\pi}{5}}$$

On remarque que $\frac{4\pi}{5} = \pi - \frac{\pi}{5}$, donc $\sin \frac{4\pi}{5} = \sin \frac{\pi}{5}$. On en conclut que $S_2\left(\frac{\pi}{5}\right) = \frac{1}{2}$:

$$\cos\frac{\pi}{5} + \cos\frac{3\pi}{5} = \frac{1}{2}$$

(b) Comme $\frac{3\pi}{5} = \pi - \frac{2\pi}{5}$ alors $\cos \frac{3\pi}{5} = -\cos \frac{2\pi}{5}$, et donc l'égalité de la question précédente donne :

$$\cos\frac{\pi}{5} - \cos\frac{2\pi}{5} = \frac{1}{2}.$$

La formule $\cos 2x = 2\cos^2 x - 1$ donne :

$$X - 2X^2 + 1 = \frac{1}{2}$$
 avec $X = \cos \frac{\pi}{5}$.

Ainsi $\cos\frac{\pi}{5}$ est solution de l'équation du second degré :

$$4X^2 - 2X - 1 = 0.$$

Les solutions de cette équation sont $X_1 = \frac{1+\sqrt{5}}{4}$ et $X_2 = \frac{1-\sqrt{5}}{4}$.

Comme $\frac{\pi}{5} \in \left[0, \frac{\pi}{2}\right]$ alors $\cos \frac{\pi}{5}$ est positif, donc seule la racine X_1 convient, et ainsi :

$$\cos \frac{\pi}{5} = \frac{\sqrt{5} + 1}{4}$$

Exercice 2.

1. (a) Pour tout entier $n \ge 2$ on définit la propriété :

$$\mathscr{P}_n: \sum_{k=2}^n \binom{k+1}{3} = \binom{n+2}{4}$$

On démontre par récurrence que cette propriété est vraie pour tout $n \geqslant 2$. Initialisation. Si n=2 alors :

$$\sum_{k=2}^{n} \binom{k+1}{3} = \binom{3}{3} = 1 \quad \text{et} \quad \binom{n+2}{4} = \binom{4}{4} = 1$$

La propriété \mathcal{P}_2 est donc vraie.

<u>Hérédité.</u> Supposons que pour un certain $n \ge 2$ la propriété est vraie. Alors :

$$\sum_{k=2}^{n+1} \binom{k+1}{3} = \sum_{k=2}^{n} \binom{k+1}{3} + \binom{n+2}{3}$$

Comme la propriété \mathcal{P}_n est supposée vraie :

$$\sum_{k=2}^{n+1} \binom{k+1}{3} = \binom{n+2}{4} + \binom{n+2}{3}$$

La formule de Pascal donne alors :

$$\sum_{k=2}^{n+1} \binom{k+1}{3} = \binom{n+3}{4}$$

Il s'agit exactement de la propriété \mathcal{P}_{n+1} .

On a démontré que la propriété \mathscr{P}_n implique la propriété \mathscr{P}_{n+1} pour tout $n \geq 2$, donc la propriété \mathscr{P} est héréditaire.

<u>Conclusion.</u> Par récurrence la propriété \mathcal{P}_n est vraie pour tout entier $n \geq 2$.

(b) Par définition des coefficients du binôme :

$$\binom{k+1}{3} = \frac{(k+1)!}{3!(k-2)!} = \frac{(k+1)k(k-1)}{6}$$

$$\binom{n+2}{4} = \frac{(n+2)!}{4!(n-2)!} = \frac{(n+2)(n+1)n(n-1)}{24}$$

La formule de la question précédente donne :

$$\forall n \ge 2$$
 $\sum_{k=2}^{n} \frac{1}{6} (k+1)k(k-1) = \frac{1}{24} (n+2)(n+1)n(n-1)$

Pour n=0 et n=1 la somme est vide, donc nulle, ce qui est cohérent avec le membre de droite, donc cette formule est vraie pour tout $n \in \mathbb{N}$:

$$\forall n \in \mathbb{N}$$
 $\sum_{k=2}^{n} \frac{1}{6} (k+1)k(k-1) = \frac{1}{24} (n+2)(n+1)n(n-1)$

Le terme de la somme pour k = 1 est nul donc :

$$\forall n \in \mathbb{N} \qquad \sum_{k=1}^{n} \frac{1}{6} (k+1)k(k-1) = \frac{1}{24} (n+2)(n+1)n(n-1)$$

On développe : $(k+1)k(k-1) = k(k^2-1) = k^3 - k$.

Par linéarité, en multipliant par 6 :

$$\sum_{k=1}^{n} k^3 - \sum_{k=1}^{n} k = \frac{1}{4}(n+2)(n+1)n(n-1)$$

Ceci donne:

$$C_n - A_n = \frac{1}{4}(n+2)(n+1)n(n-1)$$

On sait que $A_n = \frac{n(n+1)}{2}$ donc :

$$C_n = A_n + \frac{1}{4}(n+2)(n+1)n(n-1)$$
$$= \frac{n(n+1)}{2} \left[1 + \frac{(n+2)(n-1)}{2} \right] = \frac{n(n+1)}{2} \times \frac{n^2 + n}{2}$$

Finalement:

$$C_n = \left(\frac{n(n+1)}{2}\right)^2$$

2. (a) La formule de la question précédente donne :

$$\forall i \in \mathbb{N}$$
 $C_i = \sum_{k=1}^{i} k^3 = \frac{i^2(i+1)^2}{4} = \frac{1}{4} (i^4 + 2i^3 + i^2)$

En conséquence, par linéarité:

$$S_n = \sum_{i=1}^n C_i = \frac{1}{4} \sum_{i=1}^n i^4 + \frac{1}{2} \sum_{i=1}^n i^3 + \frac{1}{4} \sum_{i=1}^n i^2$$

La variable i étant muette :

$$S_n = \frac{1}{4}D_n + \frac{1}{2}C_n + \frac{1}{4}B_n$$

(b) On remarque que:

$$S_n = \sum_{i=1}^n \sum_{k=1}^i k^3$$

Par propriété des sommes triangulaires :

$$S_n = \sum_{1 \leqslant k \leqslant i \leqslant n} k^3 = \sum_{k=1}^n \sum_{i=k}^n k^3$$

La somme intérieure est :

$$\sum_{i=k}^{n} k^3 = (n - (k-1))k^3 = (n+1)k^3 - k^4$$

Ceci donne par linéarité:

$$S_n = (n+1)\sum_{k=1}^n k^3 - \sum_{k=1}^n k^4$$

Finalement:

$$S_n = (n+1)C_n - D_n$$

(c) Les deux expressions de \mathcal{S}_n obtenues donnent :

$$\frac{1}{4}D_n + \frac{1}{2}C_n + \frac{1}{4}B_n = (n+1)C_n - D_n$$

On isole D_n :

$$\frac{5}{4}D_n = \left(n + \frac{1}{2}\right)C_n - \frac{1}{4}B_n$$

Et donc:

$$D_n = \frac{2}{5}(2n+1)C_n - \frac{1}{5}B_n$$

Grâce aux formules pour C_n et B_n :

$$D_n = \frac{2}{5}(2n+1)\frac{n^2(n+1)^2}{4} - \frac{1}{5}\frac{n(n+1)(2n+1)}{6}$$
$$= \frac{n(n+1)(2n+1)}{5} \left[\frac{n(n+1)}{2} - \frac{1}{6}\right]$$
$$= \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}$$

On a démontré la formule suivante :

$$\forall n \in \mathbb{N} \qquad \sum_{k=1}^{n} k^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$